, Volume 15, Issue 2, pp 255–280 | Cite as

The local nature of Δ-coloring and its algorithmic applications

  • Alessandro Panconesi
  • Aravind Srinivasan


Given a connected graphG=(V, E) with |V|=n and maximum degree Δ such thatG is neither a complete graph nor an odd cycle, Brooks' theorem states thatG can be colored with Δ colors. We generalize this as follows: letG-v be Δ-colored; then,v can be colored by considering the vertices in anO(logΔn) radius aroundv and by recoloring anO(logΔn) length “augmenting path” inside it. Using this, we show that Δ-coloringG is reducible inO(log3n/logΔ) time to (Δ+1)-vertex coloringG in a distributed model of computation. This leads to fast distributed algorithms and a linear-processorNC algorithm for Δ-coloring.

Mathematics Subject Classification (1991)

68 Q 22 05 C 15 68 R 10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Awerbuch, A. V. Goldberg, M. Luby, andS. A. Plotkin: Network decomposition locality in distributed computation, in:Proceedings of the IEEE Symposium on Foundations of Computer Science, (1989), 364–369.Google Scholar
  2. [2]
    B. Bollobás:Graph Theory, Springer Verlag, New York, 1979.Google Scholar
  3. [3]
    R. L. Brooks: On colouring the nodes of a network,Proc. Cambridge Phil. Soc. 37 (1941), 194–197.Google Scholar
  4. [4]
    R. Cole, andU. Vishkin: Deterministic coin tossing with applications to optimal parallel list ranking,Information and Control 70 (1986), 32–53.Google Scholar
  5. [5]
    A. V. Goldberg, S. A. Plotkin, andG. E. Shannon: Parallel symmetry-breaking in sparse graphs,SIAM J. Disc. Math. 1 (1989), 434–446.Google Scholar
  6. [6]
    P. Hajnal, andE. Szemerédi: Brooks coloring in parallel,SIAM. J. Disc. Math. 3 (1990), 74–80.Google Scholar
  7. [7]
    M. Krachmer, andJ. Naor: A faster parallel algorithm to color a graphy with Δ colors,Journal of Algorithms 9 (1988), 83–91.Google Scholar
  8. [8]
    H. J. Karloff: An NC-algorithm for Brooks' theorem,Theoretical Computer Science 68(1) (1989), 89–103.Google Scholar
  9. [9]
    R. M. Karp: Probabilistic recurrence relations, in:Proceedings of the ACM Symposium on Theory of Computing (1991), 190–197.Google Scholar
  10. [10]
    G. F. Lev, N. Pippenger, andL. G. Valiant: A fast parallel algorithm for routing in permutation networks,IEEE Transactions on Computers 30 (1981), 93–100.Google Scholar
  11. [11]
    N. Linial: Locality in distributed graph algorithms,SIAM J. Comput. 21(1) (1992), 193–201.Google Scholar
  12. [12]
    M. Luby: Removing randomness in parallel computation without a processor penalty,Journal of Computer and System Sciences,47 (1993), 250–286.Google Scholar
  13. [13]
    A. Panconesi, andA. Srinivasan: Improved distributed algorithm for coloring and network decomposition problems, in:Proceedings of the ACM Symposium on Theory of Computing (1992), 581–592.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • Alessandro Panconesi
    • 1
  • Aravind Srinivasan
    • 2
  1. 1.Fachbereich für Mathematik und Informatik Institut für InformatikFreie Universität BerlinBerlinGermany
  2. 2.DIMACS CenterRutgers UniversityPiscatawayUSA

Personalised recommendations