Advertisement

Combinatorica

, Volume 15, Issue 2, pp 175–185 | Cite as

The minimum independence number for designs

  • David A. Grable
  • Kevin T. Phelps
  • Vojtěch Rödl
Article

Abstract

Fort=2,3 andk≥2t−1 we prove the existence oft−(n,k,λ) designs with independence numberC λ,k n (k−t)/(k−1) (ln n) 1/(k−1) . This is, up to the constant factor, the best possible.

Some other related results are considered.

Mathematics Subject Classification (1991)

05 B 05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Beth, D. Jungnickel, andH. Lenz:Design Theory, Cambridge University Press, Cambridge, 1986.Google Scholar
  2. [2]
    M. de Brandes, andV. Rödl: Steiner triple systems with small maximal independent sets,Ars Combinatoria 17 (1984), 15–19.Google Scholar
  3. [3]
    J. Brown, andV. Rödl: A Ramsey type problem concerning vertex colorings,J. Comb. Theory, Series B 52 (1991), 45–52.Google Scholar
  4. [4]
    N. Eaton andV. Rödl: A canonical Ramsey theorem,Rand. Struc. Alg. 3 (1992), 427–444.Google Scholar
  5. [5]
    P. Frankl, V. Rödl, andR. M. Wilson: The number of submatrices of a given type in a Hadamard matrix and related results,J. Comb. Theory, Series B 44 (1988), 317–328.Google Scholar
  6. [6]
    Z. Füredi: Maximal independent subsets in Steiner systems and in planar sets,SIAM J. Disc. Math 4 (1991), 196–199.Google Scholar
  7. [7]
    J. W. P. Hirschfeld:Projective Geometries over Finite Fields, Clarendon Press, Oxford, 1979.Google Scholar
  8. [8]
    K. T. Phelps, andV. Rödl: Steiner triple systems with minimum independence number,Ars Combinat. 21 (1986), 167–172.Google Scholar
  9. [9]
    V. Rödl, andE. Šiňajová Note on independent sets in Steiner systems,Random Structures and Algorithms 5 (1994), 183–190.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • David A. Grable
    • 1
  • Kevin T. Phelps
    • 2
  • Vojtěch Rödl
    • 3
  1. 1.Department of Algebra, Combinatorics, and AnalysisAuburn UniversityAuburnUSA
  2. 2.Department of Algebra, Combinatorics, and AnalysisAuburn UniversityAuburnUSA
  3. 3.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA

Personalised recommendations