Integral Equations and Operator Theory

, Volume 14, Issue 5, pp 613–677 | Cite as

Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts

  • Asher Ben-Artzi
  • Israel Gohberg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BGK] H. Bart, I. Gohberg and M. A. Kaashoek, Explicit Wiener Hopf factorization and realization, Operator Theory: Advances and Applications, Vol. 21, 1986.Google Scholar
  2. [BG] A. Ben-Artzi and I. Gohberg, Band matrices and dichotomy, Operator Theory: Advances and Applications, Vol. 50, pp. 137–170, 1990.Google Scholar
  3. [BG1] A. Ben-Artzi and I. Gohberg, Inertia theorems for nonstationary systems and dichotomy, Linear Algebra and Its Applications, Vol. 120, pp. 95–138, 1989.Google Scholar
  4. [BGK1] A. Ben-Artzi, I. Gohberg, and M. A. Kaashoek, Invertibility and dichotomy of singular difference equations, Operator Theory: Advances and Applications, Vol. 48, 1990.Google Scholar
  5. [B0] C. de Boor, Dichotomies for band matrices, SIAM J. Numer. Anal., Vol. 17(6), 1980.Google Scholar
  6. [CS] Ch. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations, Math. Annalen, Vol. 172, pp. 139–166, 1967.Google Scholar
  7. [DK] Ju. L. Daleckii and M. G. Krein, Stability of solutions of differential equations in Banach space, Transl. Math. Monographs, Vol. 43, Amer. Math. Soc., Providence, Rhode Island, 1974.Google Scholar
  8. [GF] I. C. Gohberg and I. A. Feldman, Convolution equations and projection methods for their solution, Transl. Math. Monographs, Vol. 41, Amer. Math. Soc., Providence, Rhode Island, 1974.Google Scholar
  9. [GK] I. C. Gohberg and M. G. Krein, Systems of integral equations on a half line depending on the difference of arguments, Uspehi Mat. Nauk 13 (1958), No. 2 (80), pp. 3–72; English transl., Amer. Math. Soc. Transl. (2) 14 (1960), pp. 217–287.Google Scholar
  10. [GKvS] I. Gohberg, M. A. Kaashoek and F. van Schagen, Non-compact integral operators with semi-separable kernels and their discrete analogous: inversion and Fredholm properties, Integral Equations and Operator Theory, Vol. 7, pp. 642–703, 1984.Google Scholar
  11. [PS] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. 1, Springer Verlag, 1982.Google Scholar
  12. [S] A. L. Shields, Weighted shifts operators and analytic function theory, in Topics in Operator Theory, edited by C. Pearcy, Math. Surveys No. 13, Amer. Math. Soc., Providence, Rhode Island, 1974.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • Asher Ben-Artzi
    • 1
  • Israel Gohberg
    • 2
  1. 1.Department of MathematicsIndiana UniversityBloomingtonUSA
  2. 2.School of Mathematical Sciences The Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations