Mathematische Zeitschrift

, Volume 196, Issue 3, pp 427–452 | Cite as

Modèles de Whittaker dégénérés pour des groupesp-adiques

  • C. Mœglin
  • J. L. Waldspurger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [B-Z]
    Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductivep-adic groups. I. Ann. Sci. Ec. Norm. Super, 4e série,10, 441–472 (1977)Google Scholar
  2. [B-Z2]
    Bernstein, I.N., Zelevinsky, A.V.: Representations of the group Gl(n, F), whereF is a non archimedean local field. Russ. Math. Surv.31, 1–68 (1976)Google Scholar
  3. [B]
    Bourbaki, N.: Groupes et algèbres de Lie, Chap. 7 et 8. fasc. XXXVIII. Paris; Hermann 1975Google Scholar
  4. [Hch]
    Harish-Chandra: Admissible distributions on reductivep-adic groups, Lie Theories and their applications, Queen's Papers in Pure and Applied Mathematics, Queen's University, Kingston, Ontario, 1978, p. 281–347Google Scholar
  5. [H]
    Howe, R.: The Fourier transform and germs of characters (case of Gln over ap-adic field). Math. Ann208, 305–322 (1974)Google Scholar
  6. [H2]
    Howe, R.: A notion of rank for unitary representations of classical groups. C.I.M.E., Summer School on Harmonic Analysis, Cortona, 1980Google Scholar
  7. [M]
    Mœglin, C.: Representation de petit rang d'après R. Howe, exposé au séminaire automorphe de Paris 7, preprint, 1986Google Scholar
  8. [Ra]
    Ranga Rao, R.: Orbital integrals in a semi-simple Lie group. Ann. Math.96, 505–510 (1972)Google Scholar
  9. [R1]
    Rodier, F.: Modèle de Whittaker et caractères de représentations, in non commutative harmonic analysis, édité par J. Carmona et M. Vergne, Lect. Notes Math. 466, pp. 151–171. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  10. [R2]
    Rodier, F.: Décomposition de la série principale des groupes réductifsp-adiques, in non commutative harmonic analysis, édité par H. Carmona et M. Vergne, Lect. Notes Math. 880. Berlin-Heidelberg-New-York: Springer 1981Google Scholar
  11. [R3]
    Rodier, F.: Les représentations deGSp(4,k) oùk est un corps local C.R.. Acad. Sc. Paris283, 429–431 (1976)Google Scholar
  12. [S]
    Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel, Lect. Notes Math. 946. Berlin-Heidelberg-New-York: Springer 1982Google Scholar
  13. [S-S]
    Springer, T.A., Steinberg, R.: Conjugacy classes, in A. Borel et al.: Seminar on algebraic groups and related finite groups. Lect. Notes Math. 131. Berlin-Heidelberg-New-York: Springer 1970Google Scholar
  14. [Z]
    Zelevinsky, A.V.: Induced representations of reductivep-adic groups. II. On irreducible representations of Gl(n). Ann. Sci. Ec. Norm. Super, 4e série13, 165–210 (1980)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • C. Mœglin
    • 1
  • J. L. Waldspurger
    • 2
  1. 1.L.M.F. Aile 45-46Université P. et M. CurieParis Cedex 05France
  2. 2.E.N.S. centre de MathématiquesParisFrance

Personalised recommendations