Probability Theory and Related Fields

, Volume 96, Issue 4, pp 475–501 | Cite as

The structure of a Brownian bubble

  • Robert C. Dalang
  • John B. Walsh
Article

Summary

We examine local geometric properties of level sets of the Brownian sheet, and in particular, we identify the asymptotic distribution of the area of sets which correspond to excursions of the sheet high above a given level in the neighborhood of a particular random point. It is equal to the area of certain individual connected components of the random set {(s, t):B(t)>b(s)}, whereB is a standard Brownian motion andb is (essentially) a Bessel process of dimension 3. This limit distribution is studied and, in particular, explicit formulas are given for the probability that a point belongs to a specific connected component, and for the expected area of a component given the height of the excursion ofB(t)-b(s) in this component. These formulas are evaluated numerically and compared with the results from direct simulations ofB andb.

Mathematics subject classifications (1991)

60G60 60G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalang, R.C., Walsh, J.B.: Geography of the level sets of the Brownian sheet. Probab. Theory Relat. Fields (to appear, 1993)Google Scholar
  2. 2.
    Doob, J.L.: Classical potential theory and its probabilistic counterpart. Berlin Heidelberg New York: Springer 1984Google Scholar
  3. 3.
    Evans, S.N.: Potential theory for a family of several Markov processes. Ann. Inst. Henri Poincaré23, 499–530 (1987)Google Scholar
  4. 4.
    Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam: North Holland 1981Google Scholar
  5. 5.
    Imhof, J.P.: Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. J. Appl. Probab.21, 500–510 (1984)Google Scholar
  6. 6.
    Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Berlin Heidelberg New York: Springer 1988Google Scholar
  7. 7.
    Meyer, P.A.: Théorie élémentaire des processes à deux indices. In: Korezlioglu, H., Mazziotto, G., Szpirglas, J. (eds.) Processus aléatoires à deux indices. (Lect. Notes Math., vol. 863, pp. 1–39) Berlin Heidelberg New York: Springer 1981Google Scholar
  8. 8.
    Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Berlin Heidelberg New York: Springer 1991Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Robert C. Dalang
    • 1
  • John B. Walsh
    • 2
  1. 1.Department of MathematicsTufts UniversityMedfordUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada

Personalised recommendations