Integral Equations and Operator Theory

, Volume 38, Issue 2, pp 129–171 | Cite as

Direct and inverse scattering for selfadjoint Hamiltonian systems on the line

  • Tuncay Aktosun
  • Martin Klaus
  • Cornelis van der Mee


A direct and inverse scattering theory on the full line is developed for a class of first-order selfadjoint 2n×2n systems of differential equations with integrable potential matrices. Various properties of the corresponding scattering matrices including unitarity and canonical Wiener-Hopf factorization are established. The Marchenko integral equations are derived and their unique solvability is proved. The unique recovery of the potential from the solutions of the Marchenko equations is shown. In the case of rational scattering matrices, state space methods are employed to construct the scattering matrix from a reflection coefficient and to recover the potential explicitly.

MSC Primary

34A55 81U40 Secondary 73D50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adamyan, V. M. and Arov, D. Z.: On scattering operators and contraction semigroups in Hilbert space.Soviet Math. Dokl. 6, 1377–1380 (1965); also:Dokl. Akad. Nauk SSSR 165, 9–12 (1965) [Russian].Google Scholar
  2. [2]
    Ablowitz, M. J. and Clarkson, P. A.:Solitons, nonlinear evolution equations and inverse scattering. London Math. Soc. Lecture Note Series149, Cambridge Univ. Press, Cambridge, 1991.Google Scholar
  3. [3]
    Alpay, D. and Gohberg, I.: Inverse spectral problems for differential operators with rational scattering matrix functions.J. Differential Equations 118, 1–19 (1995).Google Scholar
  4. [4]
    Alpay, D. and Gohberg, I.: Inverse scattering problem for differential operators with rational scattering matrix functions. In: Böttcher, A. and Gohberg, I. (Eds.):Singular integral operators and related topics (Tel Aviv, 1995), 1–18. Birkhäuser OT90, Basel, 1996.Google Scholar
  5. [5]
    Alpay, D. and Gohberg, I.: Potential associated with rational weights. In: Gohberg, I. and Lyubich, Yu. (Eds.):New results in operator theory and its applications, 23–40. Birkhäuser OT98, Basel, 1997.Google Scholar
  6. [6]
    Alpay, D. and Gohberg, I.: State space method for inverse spectral problems.Progr. Systems Control Theory 22, 1–16 (1997).Google Scholar
  7. [7]
    Alpay, D., Gohberg, I., and Sakhnovich, L.: Inverse scattering problem for continuous transmission lines with rational reflection coefficient function. In: Gohberg, I., Lancaster, P., and Shivakumar, P. N. (Eds.):Recent developments in operator theory and its applications (Winnipeg, MB, 1994), 1–16. Birkhäuser OT87, Basel, 1996.Google Scholar
  8. [8]
    Arov, D. Z.: Darlington realization of matrix-valued functions.Math. USSR Izv. 7, 1295–1326 (1973); also:Izv. Akad. Nauk SSSR Ser. Mat. 37, 1299–1331 (1973) [Russian].Google Scholar
  9. [9]
    Bava, G. P., Ghione, G., and Maio, I.: Fast exact inversion of the generalized Zakharov-Shabat problem for rational scattering data: Application to the synthesis of optical couplers.SIAM J. Appl. Math. 48, 689–702 (1988).Google Scholar
  10. [10]
    Beals, R. and Coifman, R. R.: Scattering and inverse scattering for first order systems.Comm. Pure Appl. Math. 37, 39–90 (1984).Google Scholar
  11. [11]
    Beals, R. and Coifman, R. R.: Scattering and inverse scattering for first-order systems: II.Inverse Problems 3, 577–593 (1987).Google Scholar
  12. [12]
    Beals, R., Deift, P., and Tomei, C.:Direct and inverse scattering on the line. Math. Surveys and Monographs,28, Amer. Math. Soc., Providence, 1988.Google Scholar
  13. [13]
    Bart, H., Gohberg, I., and Kaashoek, M. A.:Minimal factorization of matrix and operator functions. Birkhäuser OT1, Basel, 1979.Google Scholar
  14. [14]
    Bart, H., Gohberg, I., and Kaashoek, M. A.:Exponentially dichotomous operators and inverse Fourier transforms. Report 8511/M, Econometric Institute, Erasmus University of Rotterdam, The Netherlands, 1985.Google Scholar
  15. [15]
    Bart, H., Gohberg, I., and Kaashoek, M. A.: Wiener-Hopf factorization, inverse Fourier transforms and exponentially dichotomous operators.J. Funct. Anal. 68, 1–42 (1986).Google Scholar
  16. [16]
    Beals, R., Deift, P., and Zhou, X.: The inverse scattering transform on the line. In: Fokas, A. S. and Zakharov, V. E. (Eds.):Important developments in soliton theory, 7–32. Springer, Berlin, 1993.Google Scholar
  17. [17]
    Bhatia, R.:Matrix analysis. Graduate Texts in Mathematics169, Springer, New York, 1997.Google Scholar
  18. [18]
    Böttcher, A. and Silbermann, B.:Analysis of Toeplitz operators. Springer, New York, 1990.Google Scholar
  19. [19]
    Clancey, K. and Gohberg, I.:Factorization of matrix functions and singular integral operators. Birkhäuser OT3, Basel, 1981.Google Scholar
  20. [20]
    Deift, P. and Trubowitz, E.: Inverse scattering on the line.Comm. Pure Appl. Math. 32, 121–251 (1979).Google Scholar
  21. [21]
    Faddeev, L. D.: Properties of theS-matrix of the one-dimensional Schrödinger equation.Amer. Math. Soc. Transl. (Ser. 2),65, 139–166 (1967); also:Trudy Mat. Inst. Steklova 73, 314–336 (1964) [Russian].Google Scholar
  22. [22]
    Gasymov, M. G.: The inverse scattering problem for a system of Dirac equations of order 2n.Trans. Moscow Math. Soc. 19, 41–119 (1968); also:Trudy Moscov. Mat. Obšč. 19, 41–112 (1968) [Russian].Google Scholar
  23. [23]
    Gohberg, I., Goldberg, S., and Kaashoek, M. A.:Classes of linear operators. Vol. I. Birkhäuser OT49, Basel, 1990.Google Scholar
  24. [24]
    Gohberg, I., Kaashoek, M. A., and Sakhnovich, A. L.: Canonical systems with rational spectral densities: Explicit formulas and applications.Math. Nachr. 149, 93–125 (1998).Google Scholar
  25. [25]
    Gohberg, I., Kaashoek, M. A., and Sakhnovich, A. L.: Pseudo-canonical systems with rational Weyl functions: Explicit formulas and applications.J. Differential Equations 146, 375–398 (1998).Google Scholar
  26. [26]
    Gohberg, I., Kaashoek, M. A., and Sakhnovich, A. L.: Canonical systems on the line with rational spectral densities: Explicit formulas. To appear in: Proceedings of the Mark Krein International Conference on Operator Theory and Applications, Odessa, August 18–22, Birkhäuser OT series.Google Scholar
  27. [27]
    Gohberg, I. and Rubinstein, S.: Proper contractions and their unitary minimal completions. In: Gohberg, I. (Ed.):Topics in interpolation theory of rational matrix-valued functions, 223–247. Birkhäuser OT33, Basel, 1988.Google Scholar
  28. [28]
    Grébert, B.: Inverse scattering for the Dirac operator on the real line,Inverse Problems 8, 787–807 (1992).Google Scholar
  29. [29]
    Hinton, D. B., Jordan, A. K., Klaus, M., and Shaw, J. K.: Inverse scattering on the line for a Dirac system.J. Math. Phys. 32, 3015–3030 (1991).Google Scholar
  30. [30]
    Hinton, D. B. and Shaw, J. K.: Hamiltonian systems of limit point or limit circle type with both endpoints singular.J. Differential Equations 50, 444–464 (1983).Google Scholar
  31. [31]
    Lancaster, P. and Rodman, L.:Algebraic Riccati equations. Oxford University Press, New York, 1995.Google Scholar
  32. [32]
    Melik-Adamyan, F. È.: On the properties of theS-matrix of canonical differential equations on the whole axis.Akad. Nauk Armjan. SSR Dokl. 58, 199–205 (1974) [Russian].Google Scholar
  33. [33]
    Melik-Adamyan, F. È.: Canonical differential operators in a Hilbert space.Izv. Akad. Nauk Armjan. SSR Ser. Mat. 12, 10–31, 85 (1977) [Russian].Google Scholar
  34. [34]
    Melik-Adamyan, F. È.: On a class of canonical differential operators.Soviet J. Contemporary Math. Anal. 24, 48–69 (1989); also:Izv. Akad. Nauk Armyan. SSR Ser. Mat. 24, 570–592, 620 (1989) [Russian].Google Scholar
  35. [35]
    Petrovski, I. G.:Ordinary differential equations. Prentice-Hall, Englewood Cliffs, 1966.Google Scholar
  36. [36]
    Ran, A. C. M.: Minimal factorization of selfadjoint rational matrix functions.Integral Equations Operator Theory 5, 850–869 (1982).Google Scholar
  37. [37]
    Reed, M. and Simon, B.:Methods of modern mathematical physics. III. Scattering theory. Academic Press, New York, 1979.Google Scholar
  38. [38]
    Sakhnovich, A. L.: Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it.Ukr. Math. J. 42, 316–323 (1990); also:Ukrain. Mat. Zh. 42, 356–363 (1990) [Russian].Google Scholar
  39. [39]
    Sakhnovich, L. A.: Factorization problems and operator identities.Russ. Math. Surv. 41, 1–64 (1986); also:Usp. Mat. Nauk 41, 4–55, 240 (1986) [Russian].Google Scholar
  40. [40]
    Sakhnovich, L. A.: The method of operator identities and problems in analysis.St. Petersburg Math. J. 5, 1–69 (1994); also:Algebra i Analiz 5, 3–80 (1993) [Russian].Google Scholar
  41. [41]
    Sakhnovich, L. A.: Spectral problems for canonical systems of equations on the axis.Russian J. Math. Phys. 2, 517–526 (1995).Google Scholar
  42. [42]
    Shabat, A. B.: An inverse scattering problem.Differential Equations 15, 1299–1307 (1980); also:Differ. Urav. 15, 1824–1834, 1918 (1979) [Russian].Google Scholar

Copyright information

© Birkhäuser Verlag 2000

Authors and Affiliations

  • Tuncay Aktosun
    • 1
  • Martin Klaus
    • 2
  • Cornelis van der Mee
    • 3
  1. 1.Dept. of MathematicsNorth Dakota State Univ.Fargo
  2. 2.Dept. of MathematicsVirginia TechBlacksburg
  3. 3.Dipartimento di MatematicaUniversità di CagliariCagliariItaly

Personalised recommendations