computational complexity

, Volume 3, Issue 2, pp 97–140

Exponential lower bounds for the pigeonhole principle

  • Toniann Pitassi
  • Paul Beame
  • Russell Impagliazzo
Article

Abstract

In this paper we prove an exponential lower bound on the size of bounded-depth Frege proofs for the pigeonhole principle (PHP). We also obtain an Ω(loglogn)-depth lower bound for any polynomial-sized Frege proof of the pigeonhole principle. Our theorem nearly completes the search for the exact complexity of the PHP, as S. Buss has constructed polynomial-size, logn-depth Frege proofs for the PHP. The main lemma in our proof can be viewed as a general Håstad-style Switching Lemma for restrictions that are partial matchings. Our lower bounds for the pigeonhole principle improve on previous superpolynomial lower bounds.

Key words

Complexity of propositional proof systems lower bounds 

Subject classifications

68Q99 03F20 68R05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, The complexity of the pigeonhole principle, inProc. 29th Ann. IEEE Symp. Foundations of Computer Science, 1988, 346–355.Google Scholar
  2. M. Ajtai, 138-1 on finite structures,Annals of Pure and Applied Logic,24 (1983), 1–48.Google Scholar
  3. P. Beame, Lower bounds for recognizing small cliques on CRCW PRAM's,Discrete Applied Mathematics,29 (1990), 3–20.Google Scholar
  4. P. Beame, J. Håstad, Optimal bounds for decision problems on the CRCW PRAM,Journal of the ACM,36 (1989), 643–670.Google Scholar
  5. P. Beame, R. Implagiazzo, J. Krajíček, T. Pitassi, P. Pudlák, A. Woods, Exponential lower bounds for the pigeonhole principle,Proc. 24th Ann. ACM Symp. Theory of Computing 1992, 200–220.Google Scholar
  6. S. Bellantoni, T. Pitassi, A. Urquhart, Approximation and small-depth Frege proofs,SIAM Journal of Computing,21 (1992), 1161–1179.Google Scholar
  7. M. Bonet and S. Buss, The deduction rule and linear and near-linear proof simulations, preprint 1992.Google Scholar
  8. S. Buss, Polynomial size proofs of the propositional pigeonhole principle,Journal of Symbolic Logic,52 (1987), 916–927.Google Scholar
  9. S. Buss, Personal communication, 1993.Google Scholar
  10. S. A. Cook andR. Reckhow. The relative efficiency of propositional proof systems,Journal of Symbolic Logic,44 (1979), 36–50.Google Scholar
  11. M. Furst, J. Saxe, M. Sipser, Parity, circuits and the polynomial time hierarchy,Mathematical Systems Theory,17 (1984) 13–27.Google Scholar
  12. A. Haken, The intractability of Resolution,Theoretical Computer Science 39 (1985) 297–308.Google Scholar
  13. J. Håstad,Computational limitations of small-depth circuits, The MIT Press, Cambridge, Massachusetts, 1987.Google Scholar
  14. J. Krajíček, Lower bounds to the size of constant-depth propositional proofs, preprint (1991).Google Scholar
  15. J. Krajíček, P. Pudlák, A. Woods, Exponential lower bounds to the size of bounded-depth Frege proofs of the pigeonhole principle, preprint (1991).Google Scholar
  16. J. Lynch, A depth-size tradeoff for Boolean circuits with unbounded fan-in,Lecture Notes in Computer Science 223 (1986), 234–248.Google Scholar
  17. J. Paris, A. Wilkie, A. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes,Journal of Symbolic Logic,53 Number 4 (1988).Google Scholar
  18. T. Pitassi, P. Beame, R. Impagliazzo, Exponential lower bounds for the pigeonhole principle, University of Toronto TR 257/91 (1991).Google Scholar
  19. G. S. Tseitin, On the complexity of derivation in the propositional calculus,Studies in Constructive Mathematics and Mathematical Logic, Part II, A.O. Slisenko, 1968.Google Scholar
  20. A. Urquhart, Hard examples for Resolution,JACM,34 (1987), 209–219.Google Scholar
  21. A. C. Yao, Separating the polynomial-time hierarchy by oracles,Proc. 26th Ann. IEEE Symp. Foundations of Computer Science, 1985, 1–10.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Toniann Pitassi
    • 1
  • Paul Beame
    • 2
  • Russell Impagliazzo
    • 3
  1. 1.Department of Computer ScienceUniversity of California at San DiegoLa Jolla
  2. 2.Dept. of Computer Science & EngineeringUniversity of WashingtonSeattle
  3. 3.Department of Computer ScienceUniversity of California at San DiegoLa Jolla

Personalised recommendations