Advertisement

Communications in Mathematical Physics

, Volume 70, Issue 3, pp 243–269 | Cite as

Surface tension and phase transition for lattice systems

  • J. R. Fontaine
  • Ch. Gruber
Article

Abstract

We introduce the surface tension for arbitrary spin systems and study its general properties. In particular we show that for a large class of systems, the surface tension is zero at high temperature. We also derive a geometrical condition for the surface tension to be zero at all temperature. For discrete spin systems this condition becomes a criterion to establish the existence of a phase transition associated with surface tension. This criterion is illustrated on several examples.

Keywords

Neural Network Phase Transition Statistical Physic Surface Tension Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gruber, C., Hintermann, A., Merlini, D.: Group analysis of classical systems. Lecture notes in physics60. Berlin, Heidelberg, New York: Springer 1977.Google Scholar
  2. 2.
    Jaffe, A.: Lattice instantons; De Angelis, G.F., de Falco, D., Guerra, F.: Gauge fields on lattice; Osterwalder, K., Seilder, E.: Lattice gauge theory; Gallavotti, G., Guerra, F., Miracle-Sole, S.: A comment on the talk by Seiler. All in: Mathematical problems in theoretical physics. Proceedings Rome 1977. Lecture notes in Physics80. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  3. 3.
    Onsager, L.: Phys. Rev.65, 117 (1944)Google Scholar
  4. 4.
    Fisher, M.E., Ferdinant, A.E.: Phys. Rev. Lett.19, 169 (1967)Google Scholar
  5. 4a.
    Camp, W.J., Fisher, M.E.: Phys. Rev. B6, 964 (1972)Google Scholar
  6. 4b.
    Abraham, D.B., Gallavotti, G., Martin-Löf, A.: Acta Phys.65, 73 (1973)Google Scholar
  7. 4c.
    Abraham, D.B., Reed, P.: J. Phys. A10, L 121 (1977)Google Scholar
  8. 5.
    Gallavotti, G., Martin-Löf, A., Miracle-Sole, S.: In: Statistical mechanics and mathematical problems. Lecture notes in physics20. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  9. 6.
    Gruber, C., Hintermann, A., Messager, A., Miracle-Sole, S.: Commun. Math. Phys.56, 147–159 (1977)Google Scholar
  10. 7.
    Holsztynski, W., Slawny, J.: Commun. Math. Phys.66, 147–166 (1979)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. R. Fontaine
    • 1
  • Ch. Gruber
    • 2
  1. 1.Institut de Physique ThéoriqueUniversité Catholique de LouvainLouvain-la-NeuveBelgique
  2. 2.Laboratoire de Physique ThéoriqueEPFLLausanneSwitzerland

Personalised recommendations