Advertisement

Brain Topography

, Volume 8, Issue 2, pp 109–117 | Cite as

Frequency source analysis in patients with brain lesions

  • Thalía Harmony
  • Antonio Fernández-Bouzas
  • Erzsébet Marosi
  • Thalía Fernández
  • Pedro Valdés
  • Jorge Bosch
  • Jorge Riera
  • Jorge Bernal
  • Mario Rodríguez
  • Alfonso Reyes
  • Juan Silva
  • Mario Alonso
  • José M. Sánchez Cabrera
Article

Summary

In a previos study (Harmony et al. 1993) we observed that the volume of lesions was correlated only with delta power, while the volume and density of edema showed a significant correlation with theta and alpha power, suggesting two independent origins of activity in the delta and theta bands in patients with space-occupying lesions. Our goal in this paper is to show, through a different technique, in a narrow band spectral analysis, that brain lesions are characterized by activity in the delta domain and that edema is better correlated with activity within the theta range. Frequency source analysis based on the Maximum Likelihood (ML) test for rejection of isotropicity was applied to the EEG at rest of 36 patients with space-occupying intracranial lesions. The ML test was rejected at frequencies below 1 Hz and in the low range of the delta rhythm in 31 patients. The origin of the equivalent dipoles at these frequencies was within the volume of the lesion in 27 patients. In IS patients out of 19 with vasogenic edema the ML test was rejected at frequencies in the theta range. The equivalent dipoles at these frequencies were all within the volume of the edema.

Key words

Delta rhythm Theta rhythm Slow rhythm Brain lesions Dipole analysis Frequency source analysis Vasogenic edema 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, G.J., Gloor, P. and Schaul, N. The cortical microphysiology of pathological delta waves in the electroencephalogram of cats. Electroenceph. clin. Neurophysiol., 1977, 43: 346–361Google Scholar
  2. Brillinger, D.R. Time series: data analysis and theory. Holt, Rinehart and Winston, Inc. 1975, pp. 160–166.Google Scholar
  3. Burg, J.P., Luenberger, D.G. and Wenger, D.L. Estimation of structure covariance matrices. Proc. IEEE, 1982, 70: 963–974.Google Scholar
  4. Duffy, F.H. The BEAM method for neurophysiological diagnosis. Ann. N. Y. Acad. Sci., 1985, 457: 19–34.Google Scholar
  5. Fender, D.H. Source localization of brain electrical activity. In: A. Gevins, A. Rémond (Eds.). Handbook of Electroencephalography and Clinical Neurophysiology, Revised Series. Vol. 1. Analysis of electrical and magnetic signals, Elsevier, Amsterdam, 1987: 355–403.Google Scholar
  6. Gloor, P., Ball, G. and Schaul, N. Brain lesions that produce delta waves in the EEG. Neurology, 1977, 27: 326–333.Google Scholar
  7. Goldensohn, E.S. Use of the EEG for the evaluation of focal intracranial lesions. In: D.W. Klass and D.D. Daly (Eds.), Current practice of electroencephalography. Raven Press, New York, 1979: 307–341.Google Scholar
  8. Harmony, T., Fern∧andez-Bouzas, A., Marosi, E., Fernandez, T., Bernal, J., Rodriguez, M., Reyes, A., Silva, J., Alonso, M. and Casian, G. Correlation between computed tomography and voltage and current source density spectral EEG parameters in patients with brain lesions. Electroenceph. clin. Neurophysiol., 1993, 87: 196–205.Google Scholar
  9. Lehmann, D. Principles of spatial analysis. In: A. Gevins and A. Rémond (Eds.). Handbook of Electroencephalography and Clinical Neurophysiology, Revised Series. Vol. 1. Analysis of electrical and magnetic signals, Elsevier, Amsterdam, 1987: 309–354.Google Scholar
  10. Lehmann, D. and Michel, C.M. Intracerebral dipole sources of EEG FFT power maps. Brain Topography, 1989, 2: 155–164. (Erratum: 1990, 2: 311.)Google Scholar
  11. Lehman, D. and Michel, CM. Intracerebral dipole source localization for FFT power maps. Electroenceph. clin. Neurophysiol., 1990, 76: 271–276.Google Scholar
  12. Lutkenhoner, B. Frequency-domain localization of intracerebral dipolar sources. Electroenceph. clin. Neurophysiol., 1992, 82: 112–118.Google Scholar
  13. Nuwer, M.R. Quantitative EEG. II Frequency analysis and topographic mapping in clinical settings. J. Clin. Neurophysiol., 1988, 5: 45–85.Google Scholar
  14. Petsche, H., Pockberger, H. and Rappelsberger, P. On the search for the sources of the electroencephalogram. Neuroscience, 1984, 11: 1–27.Google Scholar
  15. Prichep, L.S. and John, E.R. QEEG profiles of psychiatric disorders. Brain Topography, 1992, 4: 249–257.Google Scholar
  16. Scherg, M. Fundamentals of dipole source potential analysis. In: F. Grandori, M. Hoke and G.L. Romani (Eds.). Auditory Evoked Magnetic Fields and Electric Potentials. Advances in Audiology. Vol. 6. Karger, Basel, 1990: 40–69.Google Scholar
  17. Siotani, M., Takesi, H. and Yasunori, F. Modern multivariate statistical analysis: a graduate course and handbook. American Science Press, Inc., Columbus, 1983.Google Scholar
  18. Steriade, M., Nuñez, A. and Amzica, F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neuroscl., 1993a, 13: 3252–3265.Google Scholar
  19. Steriade, M., Nuñez, A. and Amzica, F. Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neuroscl., 1993b, 13: 3266–3283.Google Scholar
  20. Steriade, M., Contreras, D., Curro-Dorsi, R. and Nuñez, A. The slow (<1 Hz) oscillation in reticular thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neuroscl., 1993c, 13: 3284–3299.Google Scholar
  21. Silberstein, R.B. and Cadusch, P.J. Measurement processes and spatial principal component analysis. Brain Topography, 1992, 4: 267–276.Google Scholar
  22. Valdés, P., Bosch, J., Grave, R., Hernandez, J., Riera, J., Pascual, R. and Biscay, R. Frequency domain models of the EEG Brain Topography, 1992, 4: 309–319.Google Scholar

Copyright information

© Human Sciences Press, Inc. 1995

Authors and Affiliations

  • Thalía Harmony
    • 3
  • Antonio Fernández-Bouzas
    • 1
  • Erzsébet Marosi
    • 3
  • Thalía Fernández
    • 3
  • Pedro Valdés
    • 3
  • Jorge Bosch
    • 2
  • Jorge Riera
    • 3
  • Jorge Bernal
    • 3
  • Mario Rodríguez
    • 3
  • Alfonso Reyes
    • 3
  • Juan Silva
    • 2
  • Mario Alonso
    • 1
  • José M. Sánchez Cabrera
    • 1
  1. 1.Hospital Juárez de MéxicoMexico
  2. 2.Centro de Neurociencias de CubaCuba
  3. 3.ENEP Iztacala UNAMTlanepantlaEstado de México

Personalised recommendations