Microchimica Acta

, Volume 90, Issue 5–6, pp 277–285 | Cite as

Extraction spectrophotometric investigation of mixed ligand complex of molybdenum(V) with thiocyanate and 4-acetyl-2-(acetylamino)-5-dimethyl-Δ2-1,3,4-thiadiazole

  • K. N. Thimmaiah
  • G. T. Chandrappa
  • V. C. Sekhar
Original Papers


A sensitive spectrophotometric method is developed for the determination of small amounts of molybdenum based on the extraction of molybdenum-thiocyanate-4-acetyl-2-(acetylamino)-5-dimethyl-Δ2-1,3,4-thiadiazole complex into chloroform from hydrochloric acid medium which is orange red in colour. The complex has an absorption maximum at 470 nm with a molar absorptivity of 2.01×104l·mole−1·cm−1. Beer's law is valid over the concentration range 0.06–2.5 ppm of molybdenum with an optimum concentration range of 0.15–2.2 ppm. The ternary complex is stable for over one week at room temperature. Equilibrium shift method indicates 1∶4∶2 composition for molybdenum-thio-cyanate-4-acetyl-2-(acetylamino)-5-dimethyl-Δ2-1,3,4-thiadiazole complex. The effects of acidity, reagent concentrations, time, temperature and diverse ions upon the absorbance of the complex are critically assessed. This method has been used successfully for the determination of molybdenum in molybdenum steels.

Key words

molybdenum determination extraction-spectrophotometry thiocyanate AAT molybdenum steel analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. B. Sandell,Colorimetric Determination of Traces of Metals, Interscience, New York, 1959.Google Scholar
  2. [2]
    D. F. Boltz, M. G. Melon,Anal. Chem. 1976,48, 221R;1974,46, 234R;1972,44, 300R;1970,42, 152R;1968,40, 255R;1966,38, 317R.Google Scholar
  3. [3]
    J. A. Howie, L. G. Hargis,Anal. Chem. 1978,50, 243R.Google Scholar
  4. [4]
    M. M. L. Khosla, S. P. Rao,Anal. Chim. Acta 1971,57, 323.Google Scholar
  5. [5]
    C. P. Savariar, M. K. Arunachalam, T. R. Hariharan,Anal. Chim. Acta 1974,69, 305.Google Scholar
  6. [6]
    H. P. Tarasiewicz, A. Grudniewska, M. Tarasiewicz,Anal. Chim. Acta 1977,94, 435.Google Scholar
  7. [7]
    I. Adamiec,Chem. Anal. Warsaw 1966,1175, 1183.Google Scholar
  8. [8]
    A. I. Lazarev, V. I. Lazareva,Zavodsk. Lab. 1958,24, 798.Google Scholar
  9. [9]
    K. N. Thimmaiah, G. T. Chandrappa, W. D. Lloyd, C. Parkanyi,Inorg. Chim. Acta 1985,107, 1.Google Scholar
  10. [10]
    K. N. Thimmaiah, G. T. Chandrappa, W. D. Lloyd,Inorg. Chim. Acta 1985,107, 281.Google Scholar
  11. [11]
    S. Kubota, Y. Ueda, K. Fujikane, K. Toyooka, M. Shibuya,J. Org. Chem. 1980,45, 1473.Google Scholar
  12. [12]
    A. I. Vogel,Quantitative Inorganic Analysis, The Elbs Longmans, London, 1968, pp. 506.Google Scholar
  13. [13]
    J. Blazek, V. Mares,Chem. Abstr. 1967,66, 22266f.Google Scholar
  14. [14]
    Y. B. Kletinik, I. A. Bykhovskaya, L. V. Sekretox,Anal. Abstr. 1970,19, 3873.Google Scholar
  15. [15]
    V. T. Solomation, P. Y. Yokolev,Chem. Abstr. 1975,83, 21546m.Google Scholar
  16. [16]
    V. P. R. Rao, Y. Anjaeyulu, A. S. R. Murthy,Mikrochim. Acta [Wien] 1975, 265.Google Scholar
  17. [17]
    A. T. Pilipenko, Z. G. Solomenia,Chem. Abstr. 1974,80, 66382j.Google Scholar
  18. [18]
    B. Tamhina, M. J. Herak,Mikrochim. Acta [Wien] 1976,553.Google Scholar
  19. [19]
    H. Puzanowska, A. Tarasiewicz, A. Grudniewska, M. Tarasiewicz,Anal. Chim. Acta 1977,94, 440.Google Scholar
  20. [20]
    J. Bjerrum,Metal Amine Formation in Aqueous Solution, Hasse, Copenhagen, 1941, p. 298.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • K. N. Thimmaiah
    • 1
  • G. T. Chandrappa
    • 1
  • V. C. Sekhar
    • 2
  1. 1.Department of Postgraduate Studies and Research in Chemistry, Manasa GangotriUniversity of MysoreMysoreIndia
  2. 2.Department of ChemistryUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations