Advertisement

Archiv der Mathematik

, Volume 55, Issue 1, pp 82–93 | Cite as

On the Blaschke-Santaló inequality

  • Mathieu Meyer
  • Alain Pajor
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Ball, Logarithmically concave functions and sections of convex sets in ℝn. Studia Math.88, 68–84 (1988).Google Scholar
  2. [2]
    W.Blaschke, Vorlesungen über Differentialgeometrie II. Berlin-Heidelberg-New York 1923.Google Scholar
  3. [3]
    J. Bourgain andV. D. Milman, New volume ratio properties for convex symmetric bodies in ℝn. Invent. Math.88, 319–340 (1987).Google Scholar
  4. [4]
    K. J. Falconer, Applications of a result on spherical integration to the theory of convex sets. Amer. Math. Monthly90, 690–693 (1983).Google Scholar
  5. [5]
    Y. Gordon, M. Meyer andS. Reisner, Zonoids with minimal volume product. Proc. Amer. Math. Soc.104, 273–276 (1988).Google Scholar
  6. [6]
    P. M.Gruber und J.Höbinger, Kennzeichnung von Ellipsoiden mit Anwendungen. Jahrbuch Uberblicke Math. 9–29 (1976).Google Scholar
  7. [7]
    K.Leichtweiss, Konvexe Mengen. Berlin-Heidelberg-New York 1980.Google Scholar
  8. [8]
    K. Mahler, Ein Übertragungsprinzip für konvexe Körper. Casopis Pest. Math. Fys.68, 93–102 (1909).Google Scholar
  9. [9]
    M. Meyer, Une caractérisation volumique de certains espaces normés. Israel J. Math.55, 317–326 (1986).Google Scholar
  10. [10]
    V. D. Milman andA. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normedn-dimensional space. GAFA (Israel Functional Analysis Seminar 87/88), LNM1376, 64–104, Berlin-Heidelberg-New York 1989.Google Scholar
  11. [11]
    C. M. Petty, Affine isoperimetric problems. Ann. New York Acad. Sci.440, 113–127 (1985).Google Scholar
  12. [12]
    S. Reisner, Random polytopes and the volume product of symmetric convex bodies. Math. Scand.57, 386–392 (1985).Google Scholar
  13. [13]
    S. Reisner, Zonoids with minimal volume product. Math. Z.192, 339–346 (1986).Google Scholar
  14. [14]
    S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis. J. London Math. Soc.36, 126–136 (1987).Google Scholar
  15. [15]
    J. Saint Raymond, Sur le volume des corps convexes symétriques. Séminaire d'Initiation á l'Analyse, 1980–1981, Université PARIS VI, Paris 1981.Google Scholar
  16. [16]
    L. A. Santaló, Un invariante afin para los cuerpos convexos del espacio den dimensiones. Portugal. Math.8, 155–161 (1949).Google Scholar
  17. [17]
    R. Schneider, Random polytopes generated by anisotropic hyperplanes. Bull. London Math. Soc.14, 549–553 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Mathieu Meyer
    • 1
  • Alain Pajor
    • 2
  1. 1.Equipe d'Analyse U.A. N° 754 au C.N.R.S. Université Paris VIParis Cedex 05
  2. 2.Université Paris VII U.F.R. de MathématiquesParis Cedex 05

Personalised recommendations