Advertisement

Archiv der Mathematik

, Volume 60, Issue 2, pp 157–163 | Cite as

On an analogue of Hardy's inequality

  • P. D. JohnsonJr.
  • R. N. Mohapatra
Article
  • 53 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. H. Hardy, Note on a theorem of Hilbert. Math. Z.6, 314–317 (1920).Google Scholar
  2. [2]
    G. H.Hardy, J. E.Littlewood and G.Polya, Inequalities. Cambridge 1934.Google Scholar
  3. [3]
    P. D. Johnson Jr. andR. N. Mohapatra, Density of finitely non-zero sequences in some sequence spaces. Math. Japon.24, 253–262 (1979).Google Scholar
  4. [4]
    P. D. Johnson Jr. andR. N. Mohapatra, Sectional convergence in spaces obtained as inverse images of sequence spaces under matrix transformations. Math. Japon.24, 179–185 (1979).Google Scholar
  5. [5]
    P. D. Johnson Jr. andR. N. Mohapatra, Inequalities involving lower-triangular matrices. Proc. London Math. Soc.41, 83–137 (1980).Google Scholar
  6. [6]
    P. D. Johnson Jr. andR. N. Mohapatra, The maximal normal subspace of the inverse image of a normal space of sequences by a non-negative matrix transformation. Ann. Polon. Math.45, 106–120 (1985).Google Scholar
  7. [7]
    G. M. Leibowitz, A Note on the Cesàro Sequence Spaces. Tamkang J. Math.2, 151–157 (1971).Google Scholar
  8. [8]
    I. J. Maddox, Paranormed sequence spaces generated by infinite matrices. Proc. Cambridge Phil. Soc.64, 335–340 (1968).Google Scholar
  9. [9]
    I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces. Proc. Cambridge Phil. Soc.65, 431–435 (1969).Google Scholar
  10. [10]
    I. J. Maddox andW. J. Roles, Absolute convexity in certain topological sequence spaces. Proc. Cambridge Phil. Soc.66, 541–545 (1969).Google Scholar
  11. [11]
    S. Simons, The sequence spacesl(p n) andm(p n). Proc. London Math. Soc. (3)15, 422–436 (1965).Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • P. D. JohnsonJr.
    • 1
  • R. N. Mohapatra
    • 2
  1. 1.Department of Algebra, Combinatorics and AnalysisAuburn UniversityAlabamaUSA
  2. 2.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations