Archiv der Mathematik

, Volume 59, Issue 1, pp 1–5

Representability of noetherian finitely generated algebras

  • A. Z. Anan'in
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Z. Anan'in, Locally finite approximable and locally representable varieties of algebras (Russian). Algebra i Logika16, 1–16 (1977).Google Scholar
  2. [2]
    A. Z. Anan'in, Embeddings of algebras into algebras of triangle matrices. (Russian). Mat. Sb. (N.S.)108, 168–186 (1979).Google Scholar
  3. [3]
    A. Z.Anan'in, Representable varieties of algebras, depon (Russian). Siberian Math. J. (1986).Google Scholar
  4. [4]
    A. Z.Anan'in, Representability off. g. PI-algebras with chain conditions (Russian). Materials of 19-th Vsesouznaiya algebraic conf. 1987.Google Scholar
  5. [5]
    K. I. Beydar, To theorems of Mal'tsev about matrix representations of algebras (Russian). Uspehi Mat. Nauk41, 161–162 (1986).Google Scholar
  6. [6]
    S. I. Kublanovskiy, Locally finite approximable and locally representable varieties of associative rings and algebras, depon. VINITI 14. 12. 82, 6143, 48 p. (Leningrad ped. inst., Leningrad, 1982), (Russian).Google Scholar
  7. [7]
    V. N. Latishev, To theorem of Regev about identities of tensor product of PI-algebras (Russian). Uspehi Mat. Nauk27, 213–214 (1972).Google Scholar
  8. [8]
    I. V.L'vov and V. T.Markov, On some problems of structure theory of PI-algebras (Russian). In: Varieties of algebraic system, 13–14. Novosibirsk 1986.Google Scholar
  9. [9]
    A. I. Mal'tcev, On representations of infinite algebras (Russian). Mat. Sb. (N.S.)13, 263–286 (1943).Google Scholar
  10. [10]
    A. Regev, Existence of polynomial identities inAB. Bull. Amer. Math. Soc.77, 1067–1077 (1971).Google Scholar
  11. [11]
    L. H.Rowen, Polynomial identities in ring theory. New York 1980.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • A. Z. Anan'in
    • 1
  1. 1.Institute of MathematicsAcademy of SciencesNovosibirskRussia

Personalised recommendations