Probability Theory and Related Fields

, Volume 89, Issue 3, pp 347–386

Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms

  • S. Albeverio
  • M. Röckner
Article

Summary

Using the theory of Dirichlet forms on topological vector spaces we construct solutions to stochastic differential equations in infinite dimensions of the type
$$dX_t = dW_t + \beta (X_t )dt$$
for possibly very singular drifts β. Here (Xt)t≧0 takes values in some topological vector spaceE and (Wt)t≧0 is anE-valued Brownian motion. We give applications in detail to (infinite volume) quantum fields where β is e.g. a renormalized power of a Schwartz distribution. In addition, we present a new approach to the case of linear β which is based on our general results and second quantization. We also prove new results on general diffusion Dirichlet forms in infinite dimensions, in particular that the Fukushima decomposition holds in this case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH-K 74] Albeverio, S., Høegh-Krohn, R.: The Wightman axioms and the mass gap for strong interactions of exponential type in two dimensional space-time. J. Funct. Anal.16, 39–82 (1974)Google Scholar
  2. [AH-K 75] Albeverio, S., Høegh-Krohn, R.: Quasi-invariant measures, symmetric diffusion processes and quantum fields. In: Guerra, F., Robinson, D.W., Stora, R. (eds.) Les méthodes mathématiques de la théorie quantique des champs. Colloques Internationaux du C.N.R.S., vol. 248, pp. 23–27, C.N.R.S., 1976Google Scholar
  3. [AH-K 77a] Albeverio, S., Høegh-Krohn, R.: Dirichlet forms and diffusion processes on riggid Hilbert spaces. Z. Wahrscheinlichkeitstheor. Verw. Geb.40, 1–57 (1977)Google Scholar
  4. [AH-K 77b] Albeverio, S., Høegh-Krohn, R.: Hunt processes and analytic potential theory on rigged Hilbert spaces. Ann. Inst. Henri Poincaré, Sect. B13, 269–291 (1977)Google Scholar
  5. [AH-K 79] Albeverio, S., Høegh-Krohn, R.: Uniqueness and the global Markov property for Euclidean fields. The case of trigonometric interactions. Commun. Math. Phys.68, 95–128 (1979)Google Scholar
  6. [AK 88] Albeverio, S., Kusuoka, S.: Maximality of infinite dimensional Dirichlet forms and Høegh-Krohn's model of quantum fields, Kyoto-Bochum. In: Albeverio, S., Holden, H. (eds.) Memorial volume for R. Høegh-Krohn, Cambridge: Cambridge University Press 1991.Google Scholar
  7. [AKR 90] Albeverio, S., Kusuoka, S., Röckner, M.: On partial integration in infinite dimensional space and applications to Dirichlet forms. J. Lond. Math. Soc.42, 122–136 (1990)Google Scholar
  8. [AR 89 a] Albeverio, S., Röckner, M.: Dirichlet forms, quantum fields and stochastic quantization. In: Elworthy, K.D., Zambrini, J.C. (eds.) Stochastic analysis, path integration and dynamics. (Research Notes Math., vol. 200, pp. 1–21) Harlow: Longman 1989Google Scholar
  9. [AR 89b] Albeverio, S., Röckner, M.: Classical Dirichlet forms on topological vector spaces-Construction of an associated diffusion process. Probab. Th. Rel. Fields.83, 405–434 (1989)Google Scholar
  10. [AR 90a] Albeverio, S., Röckner, M.: Classical Dirichlet forms on topological vector spaces-closability and a Cameron-Martin formula. J. Funct. Anal.88, 395–436 (1990)Google Scholar
  11. [AR 90b] Albeverio, S., Röckner, M.: New developments in theory and applications of Dirichlet form. In: Albeverio, S., Casati, G., Cattaneo, U., Merlini, D., Moresi, R. (eds.) Stochastic processes, physics and geometry, pp. 27–76, Ascona/Locarno, Swizerland, 4–9 July 1988. Singapore: World Scientific 1990Google Scholar
  12. [Ba 70] Badrikian, A.: Séminaire sur les fonctions aléatories linéaires et les mesures cylindriques. (Lect. Notes Math., vol. 139) Berlin Heidelberg New York: Springer 1970Google Scholar
  13. [B 78] Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie. Berlin New York: de Gruyter 1978Google Scholar
  14. [BCM 88] Borkar, B.S., Chari, R.T., Mitter, S.K.: Stochastic quantization of field theory in finite and infinite volume. J. Funct. Anal.81, 184–206 (1988)Google Scholar
  15. [BH 86] Bouleau, N., Hirsch, F.: Propriétés d'absolute continuité dans les espaces de Dirichlet et application aux équations differentielles stochastiques. In: Azema, J., Yor, M. (eds.) Séminaire de Probabilités XX (Lect. Notes Math., vol. 1204, pp. 131–160) Berlin: Springer 1986Google Scholar
  16. [CA 87] Carmona, R., Antoniadis, A.: Eigenfunction expansions for infinite dimensional Ornstein-Uhlenbeck processes. Probab. Th. Rel. Fields74, 31–54 (1987)Google Scholar
  17. [Dy 65] Dynkin, E.B.: Markov processes Vols. I and II. Berlin Heidelberg New York: Springer 1965Google Scholar
  18. [F 80] Fukushima, M.: Dirichlet forms and Markov processes. Amsterdam: North Holland 1980Google Scholar
  19. [F 81] Fukushima, M.: On a stochastic calculus related to Dirichlet forms and distorted Brownian motion. Phys. Rep.77, 255–262 (1981)Google Scholar
  20. [F 82] Fukushima, M.: On absolute continuity of multidimensional symmetrizable diffusions. In: (Lect. Notes Math., vol. 923, pp. 146–176) Berlin Heidelberg New York: Springer 1982Google Scholar
  21. [F 84] Fukushima, M.: Energy forms and diffusion process. In: Streit, L. (ed.) Mathematics and Physics. (Lect. on recent results) Singapore: Word Scientific 1984Google Scholar
  22. [G 69] Gamelin, T.W.: Uniform algebras. Englewood Cliffs: Prentice Hall 1969Google Scholar
  23. [Gi 83] Gielerak, R.: Verification of the global Markov property in some class of strongly coupled exponential interactions. J. Math. Phys.24, 347–355 (1983)Google Scholar
  24. [G1JS 73] Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupledP(Φ) 2 model and other applications of high temperature expansion. In: Velo, G., Wightman, A. (eds) Constructive quantum field theory. Berlin Heidelberg New York: Springer 1973Google Scholar
  25. [G1JS 74] Glimm, J., Jaffe, A., Spencer, T.: The Wightman axioms and particle structure in theP(Φ) 2 quantum field model. Ann. Math.100, 585–632 (1974)Google Scholar
  26. [G1J 86] Glimm, J., Jaffe, A.: Quantum physics: a functional integral point of view. New York Heidelberg Berlin: Springer 1986Google Scholar
  27. [Gr 65] Gross, L.: Abstract Wiener spaces. Proc. Fifth Berkeley Symp. Math. Stat. Prob. vol 2, pp. 31–42 (1965)Google Scholar
  28. [GRS 75] Guerra, F., Rosen, J., Simon, B.: TheP(Φ) 2 Euclidean quantum field theory as classical statistical mechanics. Ann. Math.101, 111–259 (1975)Google Scholar
  29. [GRS 76] Guerra, F., Rosen, J., Simon, B.: Boundary conditions in theP(Φ) 2 Euclidean field theory. Ann. Inst. Henri Poincaré15, 231–334 (1976)Google Scholar
  30. [H 80] Hida, T.: Brownian motion. Berlin Heidelberg New York: Springer 1980Google Scholar
  31. [Ho 85] Hohmann, R.: Stetigkeitsbedingungen für stochastische Prozesse. Diplomarbeit Universität Bielefeld 1985Google Scholar
  32. [IW 81] Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Amsterdam-Tokyo: North Holland-Kodansha 1981Google Scholar
  33. [I 84] Ito, K.: Infinite dimensional Ornstein-Uhlenbeck processes. In: Ito, K. (ed.) Stochastic analysis, pp. 197–224. Amsterdam: North Holland 1984Google Scholar
  34. [J-LM 85] Jona-Lasinio, P., Mitter, P.K.: On the stochastic quantization of field theory. Commun. Math. Phys.101, 409–436 (1985)Google Scholar
  35. [Ka 71] Kallianpur, G.: Abstract Wiener processes and their reproducing kernel Hilbert space. Z. Wahrscheinlichkeitstheor. Verw. Geb.17, 11–123 (1971)Google Scholar
  36. [Ko 88] Kolsrud, T.: Gaussian random fields, infinite dimensional Ornstein-Uhlenbeck processes and symmetric Markov processes. Acta. Appl. Math.12, 237–263 (1988)Google Scholar
  37. [Ku 75] Kuo, H.: Gaussian measures in Banach spaces. (Lect. Notes Math., vol. 463, pp. 1–224) Berlin Heidelberg New York: Springer 1975Google Scholar
  38. [K 82] Kusuoka, S.: Dirichlet forms and diffusion processes on Banach spaces. J. Fac. Sci., Univ. Tokyo, Sect. IA29, 79–95 (1982)Google Scholar
  39. [LR 90] Lyons, T., Röckner, M.: A note on tightness of capacities associated with Dirichlet forms. Bull. Lond. Math. Soc. (to appear)Google Scholar
  40. [LZ 88] Lyons, T., Zheng, W.: Crossing estimate for canonical process on a Dirichlet space and a tightness result. Asterisque157–158, 249–271 (1988)Google Scholar
  41. [P 67] Parthsathy, K.R.: Probability measures on metric spaces. New York London: Academic Press 1967Google Scholar
  42. [Pc 88] Pedersen, G.K.: Analysis now. New York Berlin Heidelberg: Springer 1988Google Scholar
  43. [PR 90] Potthoff, J., Röckner, M.: On the contraction property of infinite dimensional Dirichlet forms. J. Funct. Anal.92, 155–165 (1990)Google Scholar
  44. [RS 75] Reed, M., Simon, B.: Methods of modern mathematical physics II. Fourier analysis, self-adjointness. New York: Academic Press 1975Google Scholar
  45. [RS 78] Reed, M., Simon, B.: Methods of modern mathematical physics IV. Analysis of operators. New York: Academic Press 1978Google Scholar
  46. [R 86] Röckner, M.: Specifications and Martin boundaries forP(Φ) 2-random fields. Commun. Math. Phys.106, 105–135 (1986)Google Scholar
  47. [R 88a] Röckner, M.: Traces of harmonic functions and a new path space for the free quantum field. J. Funct. Anal.79, 211–249 (1988)Google Scholar
  48. [R 88b] Röckner, M.: On the transition function of the infinite dimensional Ornstein-Uhlenbeck process given by the free quantum field. In: Kral, J. et al. (eds.) Potential Theory. New York London: Plenum Press 1988Google Scholar
  49. [RW 87] Rogers, L.C.G., Williams, D.: Diffusions, Markov processes and martingales Vol. 2. Itô Calculus. New York: Wiley 1987Google Scholar
  50. [Sc 90] Schmuland, B.: An alternative compactification for classical Dirichlet forms on topological vector spaces. Stochastics33, 75–90 (1990)Google Scholar
  51. [Sch 73] Schwartz, L.: Radon measures on arbitrary topological spaces and cylindrical measures. London: Oxford University Press 1973Google Scholar
  52. [Si 74] Silverstein, M.L.: Symmetric Markov Processes. (Lect. Notes Math., vol. 426) Berlin Heidelberg New York: Springer 1974Google Scholar
  53. [S 74] Simon, B.: TheP(Φ) 2 Euclidean (Quantum) field theory. Princeton: Princeton University Press 1974Google Scholar
  54. [St 84] Strook, D.W.: An introduction to the theory of large deviations. New York Berlin Heidelberg: Springer 1984Google Scholar
  55. [Y 89] Yan, J.A.: Generalizations of Gross' and Minlos' theorems. In: Azema, J., Meyer, P.A., Yor, M. (eds.) Séminaire de Probabilités. XXII (Lect. Notes Math., vol. 1372, pp. 395–404) Berlin Heidelberg New York: Springer 1989Google Scholar
  56. [Yo 74] Yosida, K.: Functional analysis. Berlin Heidelberg New York: Springer 1974Google Scholar
  57. [Z 84] Zegarlinski, B.: Uniqueness and the global Markov property for Euclidean fields: The case of general exponential interaction. Commun. Math. Phys.96, 195–221 (1984)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. Albeverio
    • 1
  • M. Röckner
    • 2
  1. 1.Institut für MathematikRuhr-Universität BochumBochum 1Federal Republic of Germany
  2. 2.Institut für Angewandte MathematikUniversität BonnBonn 1Federal Republic of Germany

Personalised recommendations