Archiv der Mathematik

, Volume 51, Issue 5, pp 464–473

On the Bohr-Hardy criteria

  • J. DeFranza
  • D. J. Fleming
Article
  • 31 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. S. Bosanquet, Note on Convergence and Summability Factors III. Proc. London Math. Soc. (2)50, Sect. 2, 482–496 (1949).Google Scholar
  2. [2]
    M. Buntinas, One Toeplitz sections in sequence spaces. Math. Proc. Cambridge Phil. Soc.78, 451–460 (1975).Google Scholar
  3. [3]
    J. DeFranza andD. J. Fleming, Nörlund Polynomial Methods onBK spaces. Houston J. Math. (4)9, 447–453 (1983).Google Scholar
  4. [4]
    J. DeFranza andD. J. Fleming, Nörlund Polynomials Methods of TypeM(E). Houston J. Math. (3)10, 371–381 (1984).Google Scholar
  5. [5]
    J.DeFranza and D. J.Fleming, Sequence Spaces and Summability Factors. Math. Z., to appear.Google Scholar
  6. [6]
    G. H.Hardy, Divergent Series. Oxford 1949.Google Scholar
  7. [7]
    W. Jurkat undA. Peyerimhoff, Summierbarkeits-Faktoren, Math. Ann.58, 186–208 (1953).Google Scholar
  8. [8]
    G. E. Peterson, Summability Factors. Proc. London Math. Soc. (3)19, 341–356 (1969).Google Scholar
  9. [9]
    A. Peyerimhoff, Über Summierbarkeitsfaktoren und verwandte Fragen bei Cesàro-Verfahren. Acad. Serbi. Sci. Publ. Inst. Math.8, 139–156 (1955).Google Scholar
  10. [10]
    W. Ruckle, An abstract concept of the sum of a numerical series. Canad. J. Math.22, 863–874 (1970).Google Scholar
  11. [11]
    W. Ruckle, Topologies on sequence spaces. Pacific J. Math.42, 234–249 (1972).Google Scholar
  12. [12]
    W. Ruckle, A universal topology for sequence spaces. Math. Ann.236, 43–48 (1978).Google Scholar
  13. [13]
    W.Ruckle, Sequence Spaces. London 1981.Google Scholar
  14. [14]
    A. K. Snyder andA. Wilansky, Inclusion Theorems and semi-conservativeFK-spaces. Rocky Mountain J. Math.2, 595–603 (1972).Google Scholar
  15. [15]
    A.Wilansky, Summability through Functional Analysis. Amsterdam 1984.Google Scholar
  16. [16]
    K. Zeller, Approximation in Wirkfeldern von Summierungsverfahren. Arch. Math.4, 425–431 (1953).Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • J. DeFranza
    • 1
  • D. J. Fleming
    • 1
  1. 1.St. Lawrence UniversityCantonUSA

Personalised recommendations