Archiv der Mathematik

, Volume 64, Issue 4, pp 323–332

On the bounded term in the mean square formula for the approximate functional equation of ζ2(s)

  • Kohji Matsumoto
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.Ivić, The Riemann zeta-function. New York 1985.Google Scholar
  2. [2]
    A. Ivić, Power moments of the error term in the approximate functional equation for ζ2(s). Acta Arith.65, 137–145 (1993).Google Scholar
  3. [3]
    A. Ivić andI. Kiuchi, On some integrals involving the Riemann zeta-function in the critical strip. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.5, 19–28 (1994).Google Scholar
  4. [4]
    M. Jutila, On the approximate functional equation for ζ2(s) and other Dirichlet series. Quart. J. Math. Oxford Ser. (2)37, 193–209 (1986).Google Scholar
  5. [5]
    I. Kiuchi, On an exponential sum involving the arithmetic functionσ a(n). Math. J. Okayama Univ.29, 193–205 (1987).Google Scholar
  6. [6]
    I. Kiuchi, An improvement on the mean value formula for the approximate functional equation of the square of the Riemann zeta-function. J. Number Theory45, 312–319 (1993).Google Scholar
  7. [7]
    I. Kiuchi, The mean value formula for the approximate functional equation of ζ2(s) in the critical strip. Arch. Math.64, 316–322 (1995).Google Scholar
  8. [8]
    I. Kiuchi andK. Matsumoto, Mean value results for the approximate functional equation of the square of the Riemann zeta-function. Acta Arith.61, 337–345 (1992).Google Scholar
  9. [9]
    K. Matsumoto, The mean square of the Riemann zeta-function in the strip 1/2<σ <1 (in Japanese). Sûrikaiseki Kenkyûsho Kôkyûroku837, 150–163 (1993).Google Scholar
  10. [10]
    K. Matsumoto andT. Meurman, The mean square of the Riemann zeta-function in the critical strip II. Acta Arith.68, 369–382 (1994).Google Scholar
  11. [11]
    K. Matsumoto andT. Meurman, The mean square of the Riemann zeta-function in the critical strip III. Acta Arith.64, 357–382 (1993).Google Scholar
  12. [12]
    T. Meurman, On the mean square of the Riemann zeta-function. Quart. J. Math. Oxford Ser. (2)38, 337–343 (1987).Google Scholar
  13. [13]
    Y. Motohashi, A note on the approximate functional equation for ζ2(s). Proc. Japan Acad. Ser. A Math. Sci.59, 393–396 (1983).Google Scholar
  14. [14]
    Y. Motohashi, A note on the approximate functional equation for ζ2(s) II. Proc. Japan Acad. Ser. A Math. Sci.59, 469–472 (1983).Google Scholar
  15. [15]
    Y.Motohashi, Lectures on the Riemann-Siegel formula. Ulam Seminar, Colorado University 1987.Google Scholar
  16. [16]
    E. Preissmann, Sur la moyenne quadratique du terme de reste du probléme du cercle. C. R. Acad. Sci. Paris Sér I. Math.306, 151–154 (1988).Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Kohji Matsumoto
    • 1
  1. 1.Department of Mathematics Faculty of EducationIwate UniversityMoriokaJapan

Personalised recommendations