Constructive Approximation

, Volume 9, Issue 2–3, pp 123–166 | Cite as

On the construction of multivariate (pre)wavelets

  • Carl de Boor
  • Ronald A. DeVore
  • Amos Ron
Article

Abstract

A new approach for the construction of wavelets and prewavelets onRd from multiresolution is presented. The method uses only properties of shift-invariant spaces and orthogonal projectors fromL2(Rd) onto these spaces, and requires neither decay nor stability of the scaling function. Furthermore, this approach allows a simple derivation of previous, as well as new, constructions of wavelets, and leads to a complete resolution of questions concerning the nature of the intersection and the union of a scale of spaces to be used in a multiresolution.

AMS classification

Primary 41A63 46C99 Secondary 41A30 41A15 42B99 46E20 

Key words and phrases

Wavelets Multiresolution Shift-invariant spaces Box splines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]G. Battle (1987):A block spin construction of ondelettes, Part I: Lemarie functions. Comm. Math. Phys.,110:601–615.Google Scholar
  2. [BR]A. Ben-Artzi, A. Ron (1990):On the integer translates of a compactly supported function: dual bases and linear projectors SIAM J. Math. Anal.,21:1550–1562.Google Scholar
  3. [BS]C. Bennett, R. Sharpley (1988): Interpolation of Operators. Pure and Applied Mathematics, vol. 129. New York: Academic Press.Google Scholar
  4. [BD]C. de Boor, R. DeVore (1983):Approximation by smooth multivariate splines. Trans. Amer. Math. Soc.,276:775–788.Google Scholar
  5. [BDR]C. de Boor, R. DeVore, A. Ron (to appear):Approximation from shift-invariant subspaces of L 2(R d). Trans. Amer. Math. Soc.Google Scholar
  6. [BDR1]C. de Boor, R. DeVore, A. Ron (to appear):The structure of finitely generated shift-invariant spaces in L 2(R d), J. Period Functional Anal.Google Scholar
  7. [CW]C. K. Chui, J. Z. Wang (1992):A general framework for compactly supported splines and wavelets. J. Approx. Theory,71:263–304.Google Scholar
  8. [CW1]C. K. Chui, J. Z. Wang (1992):On compactly supported spline wavelets and a duality principle. Trans. Amer. Math. Soc.,330:903–912.Google Scholar
  9. [CSW]C. K. Chui, J. Stöckler, J. D. Ward (1992):Compactly supported box spline wavelets. Approx. Theory & Appl.,8:77–100.Google Scholar
  10. [D]I. Daubechies (1988):Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math.,XLI:909–996.Google Scholar
  11. [D1]I. Daubechies (1990):The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory,36:961–1005.Google Scholar
  12. [DR]N. Dyn, A. Ron (1990):Local approximation by certain spaces of multivariate exponential-polynomials, approximation order of exponential box splines and related interpolation problems. Trans. Amer. Math. Soc.,319:381–404.Google Scholar
  13. [JM]R. Q. Jia, C. A. Micchelli (1991):Using the refinement equation for the construction of pre-wavelets, II: powers of two. In: Curves and Surfaces (P. J. Laurent, A. Le Méhauté, L. L. Schumaker, eds.), New York: Academic Press, pp. 209–246.Google Scholar
  14. [JM1]R.-Q. Jia, C. A. Micchelli (1991): Using the Refinement Equation for the Construction of Pre-Wavelets, V: Extensibility of Trigonometric Polynomials. RC 17196, IBM.Google Scholar
  15. [JW]R.-Q. Jia, J. Z. Wang (to appear):Stability and linear independence associated with wavelet decompositions. Proc. Amer. Math. Soc.Google Scholar
  16. [LM]R. A. H. Lorentz, W. R. Madych (1991): Wavelets and generalized box splines. Arbeitspapiere der GMD No. 563.Google Scholar
  17. [Ma]S. G. Mallat (1989):Multiresolution approximations and wavelet orthonormal bases of L 2(R). Trans. Amer. Math. Soc.,315:69–87.Google Scholar
  18. [Me]Y. Meyer (1980): Ondelettes et Opérateurs I: Ondelettes. Paris: Hermann.Google Scholar
  19. [Mi]C. A. Micchelli (1991):Using the refinement equation for the construction of pre-wavelets. Numer. Algorithms,1:75–116.Google Scholar
  20. [Mi1]C. A. Micchelli (1991): Using the Refinement Equation for the Construction of Pre-Wavelets, IV: Cube Splines and Elliptic Splines United. Report RC 17195, IBM.Google Scholar
  21. [MRU]C. A. Micchelli, C. Rabut, F. Utreras (preprint):Using the refinement equation for the construction of pre-wavelets, III: elliptic splines.Google Scholar
  22. [RS]S. D. Riemenschneider, Z. Shen (1991):Box splines, cardinal series, and wavelets. In: Approximation Theory and Functional Analysis (C. K. Chui, ed.). New York: Academic Press, pp. 133–149.Google Scholar
  23. [RS1]S. D. Riemenschneider, Z. Shen (1992):Wavelets and prewavelets in low dimensions. J. Approx. Theory,71:18–38.Google Scholar
  24. [R1]A. Ron (1988):Exponential box splines. Constr. Approx.,4:357–378.Google Scholar
  25. [R2]A. Ron (1990):Factorization theorems of univariate splines on regular grids. Israel J. Math.,70:48–68.Google Scholar
  26. [Ru]W. Rudin (1974): Rela, and Complex Analysis. New York: McGraw-Hill.Google Scholar
  27. [Sö]J. Stöckler (1992):Multivariate wavelets. In: Wavelets—A Tutorial in Theory and Applications (C. K. Chui ed.). New York: Academic Press, pp. 325–355.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Carl de Boor
    • 1
  • Ronald A. DeVore
    • 2
  • Amos Ron
    • 3
  1. 1.Center for Mathematical SciencesUniversity of Wisconsin-MadisonMadisonU.S.A.
  2. 2.Department of MathematicsUniversity of South CarolinaColumbiaU.S.A.
  3. 3.Computer Sciences DepartmentUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations