Advertisement

Communications in Mathematical Physics

, Volume 72, Issue 2, pp 119–130 | Cite as

Constellations and projective classical groups

  • H. Bacry
Article

Abstract

The constellation concept is recalled (geometrical description of a ray in a vector space). The groups PO(n+1, ℂ) orP Sp(n+1, ℂ) are shown to preserve “harmonic conjugation” between two constellations. The action of the Lorentz subgroup and its rotation subgroup is described. Finally, a theorem concerning Clebsch-Gordan product of constellations is proved.

Keywords

Neural Network Statistical Physic Vector Space Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacry, H.: J. Math. Phys.15, 1686 (1974)Google Scholar
  2. 2.
    Bacry, H., Grossmann, A., Zak, J.: In: Group theoretical methods in physics, Vol. 50, eds. A. Janner, T. Janssen, M. Boon). Berlin, Heidelberg, New York: Springer 1976Google Scholar
  3. 3.
    Bacry, H.: In: Proceedings of the 2nd International Colloquium on Group Theoretical Methods in Physics (eds. A. Janner, T. Janssen). University, of Nijmegen, Netherlands, 1973Google Scholar
  4. 4.
    Bacry, H.: J. Math. Phys.19, 1192 (1978)Google Scholar
  5. 5.
    Bacry, H.: J. Math. Phys.19, 1196 (1978)Google Scholar
  6. 6.
    Bacry, H.: Phys. Rev. A18, 617 (1978)Google Scholar
  7. 7.
    Poincare, H.: Théorie mathématique de la lumière, Vol. 2. Paris: Georges Carré 1892Google Scholar
  8. 8.
    Nussenzweig, H.M.: Introduction to quantum optics. London: Gordon and Breach 1973Google Scholar
  9. 9.
    Klein, F.: Le programme d'Erlangen. Paris Gauthier-Villars 1974Google Scholar
  10. 10.
    Besson, H., Huguenin, P.: Annales Guébhard. Neuchâtel: Fondation Guébhard-Séverine 1970Google Scholar
  11. 11.
    Shaw, R.: UnpublishedGoogle Scholar
  12. 12.
    Shaw, R.: In: Group theoretical methods in physics, Vol. 50. (eds. A. Janner, T. Janssen, M. Boon). Berlin, Heidelberg, New York: Springer 1976Google Scholar
  13. 13.
    Majorana, E.: Nuovo Cimento57, 43 (1932)Google Scholar
  14. 14.
    Thom, R.: Private communicationGoogle Scholar
  15. 15.
    Bargmann, V.: Rev. Mod. Phys.34, 300 (1962)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • H. Bacry
    • 1
  1. 1.Centre de Physique Théorique, Section 2CNRS Marseille Faculté des SciencesMarseilleFrance

Personalised recommendations