Communications in Mathematical Physics

, Volume 74, Issue 1, pp 21–40 | Cite as

On the integrability of classical spinor models in two-dimensional space-time

  • V. E. Zakharov
  • A. V. Mikhailov


Well known classical spinor relativistic-invariant two-dimensional field theory models, including the Gross-Neveu, Vaks-Larkin-Nambu-Jona-Lasinio and some other models, are shown to be integrable by means of the inverse scattering problem method. These models are shown to be naturally connected with the principal chiral fields on the symplectic, unitary and orthogonal Lie groups. The respective technique for construction of the soliton-like solutions is developed.


Neural Network Nonlinear Dynamics Theory Model Quantum Computing Spinor Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nambu, Y., Jona-Lasinio, G.: Phys. Rev.122, 345 (1961)Google Scholar
  2. 2.
    Vaks, V.G., Larkin, A.I.: ZhETF40, 282 (1961)Google Scholar
  3. 3.
    Gross, P.J., Neveu, A.: Phys. Rev. D10, 3235 (1974)Google Scholar
  4. 4.
    Neveu, A., Papanicolaou, N.: Commun. Math. Phys.58, 31 (1978)Google Scholar
  5. 5.
    Zakharov, V.E., Mikhailov, A.V.: ZhETF74, 1953 (1978)Google Scholar
  6. 6.
    Zakharov, V.E., Takhtadyan, L.A.: TMF38, 26 (1979)Google Scholar
  7. 7.
    Zakharov, V.E., Mikhailov, A.V.: Pis'ma v ZhETF27, 47 (1978)Google Scholar
  8. 8.
    Zakharov, V.E., Shabat, A.B.: ZhETF64, 1627 (1973)Google Scholar
  9. 9.
    Zakharov, V.E., Mikhailov, A.V.: Funct. Anal. Its Appl.14, 55 (1980)Google Scholar
  10. 10.
    Kulish, P.P., Reiman, A.G.: Proc. Sci. Seminars. LOMI77, 134 (1978)Google Scholar
  11. 11.
    Zakharov, V.E., Shabat, A.B.: Funct. Anal. Its Appl.13, 13 (1979)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. E. Zakharov
    • 1
  • A. V. Mikhailov
    • 1
  1. 1.L. D. Landau Institute of Theoretical PhysicsAcademy of Sciences of USSRMoscowUSSR

Personalised recommendations