Advertisement

Structural optimization

, Volume 12, Issue 4, pp 222–228 | Cite as

Crash worthiness design optimization using multipoint sequential linear programming

  • L. F. P. Etman
  • J. M. T. A. Adriaens
  • M. T. P. van Slagmaat
  • A. J. G. Schoofs
Research Papers

Abstract

A design optimization tool has been developed for the crash victim simulation software MADYMO. The crash worthiness optimization problem is characterized by a noisy behaviour of objective function and constraints. Additionally, objective function and constraint values follow from a computationally expensive numerical analysis. Sequential approximate optimization is used to deal with both the noisy functional behaviour and the high computational costs. By means of multipoint approximations, a sequence of linear programming problems is generated that can be easily solved. The optimization approach is illustrated for an analytical test problem and an industrial crash worthiness design problem.

Keywords

Objective Function Design Optimization Programming Problem Design Problem Test Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afimawala, K.A.; Mayne, R.W. 1974: Optimum design of an impact absorber.J. Eng. Ind. 96, 124–130Google Scholar
  2. Barthelemy, J.-F.M.; Haftka, R.T. 1993: Approximation concepts for optimum structural design — a review.Struct. Optim. 5, 129–144Google Scholar
  3. Bennett, J.A.; Park, G.J. 1995: Automotive occupant dynamics optimization.Shock and Vibration 2, 471–479Google Scholar
  4. Bosio, A.C.; Lupker, H.A. 1991: Design of experiments in occupant simulation.SAE Technical paper 910891Google Scholar
  5. Etman, L.F.P.; Thijssen, E.J.R.W.; Schoofs, A.J.G.; van Campen, D.H. 1994: Optimization of multibody systems using sequential linear programming. In: Gilmore, B.J.; Hoeltzel, D.A.; Dutta, D.; Eschenauer, H.A. (eds.)Proc. ASME Advances in Design Automation (held in Minneapolis)DE-69-2, 525–530Google Scholar
  6. Free, J.W.; Parkinson, A.R.; Bryce, G.R.; Balling, R.J. 1987: Approximation of computationally expensive and noisy functions for constrained nonlinear optimization.J. Mech. Trans. Auto. Des. 109, 528–532Google Scholar
  7. Haftka, R.T.; Gürdal, Z. 1992:Elements of structural optimization, Dordrecht: KluwerGoogle Scholar
  8. Hardy, W.N.; Khalil, T.B.; King, A.I. 1994: Literature review of head injury biomechanics.Int. J. Impact Engng. 15, 561–586Google Scholar
  9. Schoofs, A.J.G. 1987:Experimental design and structural optimization. Ph.D. Dissertation. Eindhoven University of TechnologyGoogle Scholar
  10. Schoofs, A.J.G.; Klink, M.B.M.; van Campen, D.H. 1992: Approximation of structural optimization problems by means of designed numerical experiments.Struct. Optim. 4, 206–212Google Scholar
  11. TNO 1994:MADYMO User's Manual, version 5.1. Delft: TNO Road-Vehicles Research InstituteGoogle Scholar
  12. Toropov, V.V.; Filatov, A.A.; Polynkin, A.A. 1993: Multiparameter structural optimization using FEM and multipoint approximations.Struct. Optim. 6, 7–14Google Scholar
  13. Vanderplaats, G.N. 1979: Approximation concepts for numerical airfoil optimization.NASA technical paper 1370 Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. F. P. Etman
    • 1
  • J. M. T. A. Adriaens
    • 2
  • M. T. P. van Slagmaat
    • 2
  • A. J. G. Schoofs
    • 1
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.TNO Road-Vehicles Research InstituteDelftThe Netherlands

Personalised recommendations