Advertisement

Communications in Mathematical Physics

, Volume 66, Issue 2, pp 147–166 | Cite as

Phase transitions in ferromagnetic spin systems at low temperatures

  • W. Holsztynski
  • J. Slawny
Article

Abstract

We consider the problem of the existence of first order phase transitions in ferromagnetic spin systems at low temperatures. A criterion is given for the existence of phase transitions in terms of an algebraic system canonically associated with any interaction. The criterion involves finding out if the greatest common divisor of few polynomials belongs to the ideal generated by these polynomials.

In connection with results published earlier, this work yields a description of all translation invariant (also of periodic and quasi-periodic) equilibrium states at low temperatures.

Keywords

Neural Network Phase Transition Statistical Physic Equilibrium State Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berezin, F.A., Sinai, Ya.G.: Tr. Mosk. Mat. Ova.17, 197–212 (1967)Google Scholar
  2. 2.
    Bourbaki, N.: Algebre. Paris: Hermann 1956Google Scholar
  3. 3.
    Dobrushin, R.L.: Teor. Verojatn. Ee Primen.10, 209–320 (1965)Google Scholar
  4. 4.
    Dobrushin, R.L.: Funct. Anal. Appl.2, 44–57 (1968)Google Scholar
  5. 5.
    Gertsik, V.M.: Izv. Akad. Nauk SSSR, Ser. Mat.40, 448–462 (1976)Google Scholar
  6. 6.
    Frolich, J., Israel, R., Lieb, E.H., Simon, B.: Phase transitions and reflection positivity. II. Short range lattice models. PreprintGoogle Scholar
  7. 7.
    Ginibre, J.: Correlations in Ising ferromagnets. In: Cargese lectures, 1969. Kastler, D. (ed.). New York: Gordon and Breach 1970Google Scholar
  8. 8.
    Ginibre, J., Grossman, A., Ruelle, D.: Commun. Math. Phys.3, 187–193 (1966)Google Scholar
  9. 9.
    Griffiths, R.B.: Phys. Rev.136A, 437–439 (1964)Google Scholar
  10. 10.
    Griffiths, R.B.: Rigorous results and theorems. In: Phase transitions and critical phenomena, Vol. I. Domb, C., Green, M.S. (eds.). New York: Academic Press 1971Google Scholar
  11. 11.
    Griffiths, R.B.: Phase transitions. In: Les Houches lectures, 1970. De Witt, C., Stora, R., (eds.). New York: Gordon and Breach 1971Google Scholar
  12. 12.
    Gruber, C.: General lattice systems: Group structure, symmetry breakdown and phase transitions. In: Proc. 2nd Int. Coll. on Group Theoretical Methods in Physics, Nijmegen 1973. Janner, A., Janssen, T. (eds.). Nijmegen 1974Google Scholar
  13. 13.
    Gruber, C., Hintermann, A., Merlini, D.: Group analysis of ciassical lattice systems. In: Lecture notes in physics, Vol. 60. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  14. 14.
    Holsztynski, W.: Am. J. Math.99, 191–224 (1977)Google Scholar
  15. 15.
    Holsztynski, W., Slawny, J.: Lett. Nuovo Cimento13, 534–538 (1975)Google Scholar
  16. 16.
    Kelly, D.G., Sherman, S.: J. Math. Phys.9, 466–484 (1968)Google Scholar
  17. 17.
    Lanford, O.E., Ruelle, D.: Commun. math. Phys.13, 194–215 (1969)Google Scholar
  18. 18.
    Lang, S.: Algebra. New York: Addison-Wesley 1965Google Scholar
  19. 19.
    Lebowitz, J.L.: J. Stat. Phys.16, 463 (1977)Google Scholar
  20. 20.
    Merlini, D.: Lett. Nuovo Cimento8, 623–629 (1973)Google Scholar
  21. 21.
    Merlini, D.: Group structure analysis for classical lattice systems. Thesis, EPFL (1974)Google Scholar
  22. 22.
    Merlini, D., Gruber, C.: J. Math. Phys.13, 1814–23 (1972)Google Scholar
  23. 23.
    Merlini, D., Hintermann, A., Gruber, C.: Lett. Nuovo Cimento7, 815–818 (1973)Google Scholar
  24. 24.
    Peierls, R.: Proc. Cambridge Philos. Soc.32, 477–481 (1936)Google Scholar
  25. 25.
    Pirogov, S.A.: Izv. Akad. Nauk SSSR, Ser. Mat.39, 1404–1442 (1975)Google Scholar
  26. 26.
    Pirogov, S.A., Sinai, Ya.G.: Teor. Mat. Fiz.25, 358–369 (1975);26, 61–76 (1976)Google Scholar
  27. 27.
    Ribenboim, P.: Rings and modules. New York: John Wiley 1969Google Scholar
  28. 28.
    Ruelle, D.: Statistical mechanis. Rigorous results. New York: Benjamin 1969Google Scholar
  29. 29.
    Ruelle, D.: Private communication. Spring (1972)Google Scholar
  30. 30.
    Slawny, J.: Commun. Math. Phys.34, 271–236 (1973)Google Scholar
  31. 31.
    Slawny, J.: Commun. Math. Phys.35, 297–305 (1974)Google Scholar
  32. 32.
    Slawny, J.: Commun. Math. Phys.46, 75–97 (1976)Google Scholar
  33. 33.
    Slawny, J.: A note on duality and self-dual spin 1/2 systems. Preprint (1975)Google Scholar
  34. 34.
    Slawny, J.: Phase transitions in ferromagnetic spin systems at low temperatures II. (In preparation)Google Scholar
  35. 35.
    Wegner, F.J.: J. Math. Phys.12, 2259–2272 (1971)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • W. Holsztynski
    • 1
  • J. Slawny
    • 2
  1. 1.Department of MathematicsThe University of Western OntarioLondonCanada
  2. 2.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations