Communications in Mathematical Physics

, Volume 66, Issue 3, pp 267–290

The Positive Action conjecture and asymptotically Euclidean metrics in quantum gravity

  • G. W. Gibbons
  • C. N. Pope
Article

Abstract

The Positive Action conjecture requires that the action of any asymptotically Euclidean 4-dimensional Riemannian metric be positive, vanishing if and only if the space is flat. Because any Ricci flat, asymptotically Euclidean metric has zero action and is local extremum of the action which is a local minimum at flat space, the conjecture requires that there are no Ricci flat asymptotically Euclidean metrics other than flat space, which would establish that flat space is the only local minimum. We prove this for metrics onR4 and a large class of more complicated topologies and for self-dual metrics. We show that ifRμμ≧0 there are no bound states of the Dirac equation and discuss the relevance to possible baryon non-conserving processes mediated by gravitational instantons. We conclude that these are forbidden in the lowest stationary phase approximation. We give a detailed discussion of instantons invariant under anSU(2) orSO(3) isometry group. We find all regular solutions, none of which is asymptotically Euclidean and all of which possess a further Killing vector. In an appendix we construct an approximate self-dual metric onK3 — the only simply connected compact manifold which admits a self-dual metric.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harrison, B.K., Thorne, K.S., Wakane, M., Wheeler, J.A.: Gravitation theory and gravitational collapse, pp. 9 and 146. Chicago, London: University of Chicago Press 1965Google Scholar
  2. 2.
    Hawking, S.W.: Commun. math. Phys.43, 199–220 (1975)Google Scholar
  3. 3.
    Zeldovich, Ya. B.: Phys. Lett.59A, 254 (1976);73B, 423–424 (1978)Google Scholar
  4. 4.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D15, 2752–2756 (1977)Google Scholar
  5. 5.
    Gibbons, G.W., Hawking, S.W., Perry, M.J.: Nucl. Phys. B138, 141–150 (1978)Google Scholar
  6. 6.
    Page, D.N.: The positive action conjecture. Phys. Rev. D18, 2733–2738 (1978)Google Scholar
  7. 7.
    Schoen, R., Yau, S.T.: Proc. Natl. Acad. Sci. U.S.75, 2567 (1978); Schoen, R., Yau, S.T.: Commun. Math. Phys.65, 45–76 (1979)Google Scholar
  8. 8.
    't Hooft, G.: Phys. Rev. Lett.37, 8–11 (1976); Phys. Rev. D14, 2432–2450 (1976)Google Scholar
  9. 9.
    Hawking, S.W.: Phys. Rev. D18, 1747–1753 (1978), and various unpublished lecturesGoogle Scholar
  10. 10.
    Lichnerowicz, A.: Compte Rendue257, 5–9 (1968)Google Scholar
  11. 11.
    Hawking, S.W., Pope, C.N.: Nucl. Phys. B146, 381–392 (1978)Google Scholar
  12. 12.
    Misner, C.W., Wheeler, J.A.: Ann. Phys. N.Y.2, 525–660 (1957)Google Scholar
  13. 13.
    Misner, C.W.: Phys. Rev.118, 1110 (1960)Google Scholar
  14. 14.
    Misner, C.W.: Ann. Phys. N.Y.24, 102–117 (1963)Google Scholar
  15. 15.
    Gibbons, G.W.: Commun. Math. Phys.27, 87–103 (1972)Google Scholar
  16. 16.
    Gibbons, G.W., Schutz, B.F.: M.N.R.A.S.159, 41–45 (1972)Google Scholar
  17. 17.
    Penrose, R.: Ann. Acad. Sci.224, 125 (1973)Google Scholar
  18. 18.
    Jang, P.S., Wald, R.M.: J. Math. Phys.18, 41–44 (1977)Google Scholar
  19. 19.
    Gibbons, G.W., Hawking, S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. (in press)Google Scholar
  20. 20.
    Hitchin, N.: J. Diff. Geom.9, 435–441 (1975)Google Scholar
  21. 21.
    Tolman, R.C.: Relativity, thermodynamics and cosmology. London: O.U.P. 1934Google Scholar
  22. 22.
    Chern, S.: Ann. Math.46, 674 (1945)Google Scholar
  23. 23.
    Eguchi, T., Gilkey, P., Hanson, A.: Phys. Rev. D17, 423–427 (1978)Google Scholar
  24. 24.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Math. Proc. Cambridge Phil. Soc.77, 43–69 (1975)Google Scholar
  25. 25.
    Hawking, S.W., Pope, C.N.: Phys. Lett.73B, 42 (1978)Google Scholar
  26. 26.
    Landau, L., Lifshitz, E.M.: Classical theory of fields. 4th Ed. Oxford, New York: Pergamon 1975Google Scholar
  27. 27.
    Eguchi, T., Hanson, A.: Phys. Lett.74B, 249–251 (1978)Google Scholar
  28. 28.
    Belinskii, V.A., Gibbons, G.W., Page, D.N., Pope, C.N.: Phys. Lett.76B, 433–435 (1978)Google Scholar
  29. 29.
    Hawking, S.W.: Phys. Lett.60A, 81–82 (1977)Google Scholar
  30. 30.
    Atiyah, M.F., Hitchin, N., Singer, I.M.: Proc. R. Soc. A362, 425 (1978)Google Scholar
  31. 31.
    Page, D.N.: Phys. Lett.78B, 249–251 (1978)Google Scholar
  32. 32.
    Gibbons, G.W., Pope, C.N.: Commun. Math. Phys.61, 239–248 (1978)Google Scholar
  33. 33.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. San Francisco: Freeman 1970Google Scholar
  34. 34.
    Lascoux, A., Berger, M.: Varietes Kahleriennes compactes. In: Lecture notes in mathematics, Vol. 154. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  35. 35.
    Page, D.N.: Phys. Lett.80B, 55–57 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • G. W. Gibbons
    • 1
  • C. N. Pope
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeEngland

Personalised recommendations