Advertisement

Communications in Mathematical Physics

, Volume 63, Issue 3, pp 277–301 | Cite as

Scattering theory for systems with different spatial asymptotics on the left and right

  • E. B. Davies
  • B. Simon
Article

Abstract

We discuss the existence and completeness of scattering for one-dimensional systems with different spatial asymptotics at ±∞, for example −d2/dx2+V(x) whereV(x)=0 (resp. sinx) ifx<0 (resp.x>0). We then extend our results to higher dimensional systems periodic, except for a localised impurity, in all but one space dimension. A new method, “the twisting trick”, is presented for proving the absence of singular continuous spectrum, and some independent applications of this trick are given in an appendix.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S.: Lectures on elliptic boundary value problems. Princeton, London, Toronto: Van Nostrand 1965Google Scholar
  2. 2.
    Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Sci. II2, 151–218 (1975)Google Scholar
  3. 3.
    Alsholm, P. K., Kato, T.: Scattering with long range potentials. Proc. Symp. Pure Math.23, 393–399 (1973)Google Scholar
  4. 4.
    Amrein, W., Georgescu, V.: On the characterization of bound states and scattering states in quantum mechanics. Helv. Phys. Acta46, 635–658 (1973)Google Scholar
  5. 5.
    Amrein, W., Martin, P., Misra, B.: On the asymptotic condition in scattering theory. Helv. Phys. Acta43, 313–344 (1970)Google Scholar
  6. 6.
    Avron, J., Herbst, I.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. math. Phys.52, 239–254 (1977)Google Scholar
  7. 7.
    Birman, M. S., Solomjak, M. Z.: On estimates of singular numbers of integral operators III. Vestn. Leningr. Univ.24, 35–48 (1969)Google Scholar
  8. 8.
    Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955Google Scholar
  9. 9.
    Combes, J. M., : An algebraic approach to scattering theory. (unpublished) (1970)Google Scholar
  10. 10.
    Combescure, M., Ginibre, J.: Scattering and local absorption for the Schrödinger operator. J. Funct. Anal. (to appear)Google Scholar
  11. 11.
    Davies, E. B.: Scattering from infinite sheets. Math. Proc. Camb. Phil. Soc.82, 327–334 (1977)Google Scholar
  12. 12.
    Deift, P.: Classical scattering theory with a trace condition. Princeton: Princeton University Press 1978Google Scholar
  13. 13.
    Deift, P.: Application of a commutator formula. Duke Math. J. (to appear)Google Scholar
  14. 14.
    Deift, P., Simon, B.: On the decoupling of finite singularities from the question of asymptotic completeness. J. Funct. Anal.23, 218–238 (1976)Google Scholar
  15. 15.
    Deift, P., Simon, B.: A time dependent approach to the completeness of multiparticle quantum systems. Comm. Pure Appl. Math.30, 573–583 (1977)Google Scholar
  16. 16.
    Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. (to appear)Google Scholar
  17. 17.
    Dinaburg, E., Sinai, Ya.: The one dimensional Schrödinger equation with a quasiperiodic potential. Funct. Anal. Appl.9, 8–21 (1975)Google Scholar
  18. 18.
    Dollard, J.: On the definition of scattering subspaces in non-relativistic quantum mechanics. J. Math. Phys.18, 229–232 (1977)Google Scholar
  19. 19.
    Eastham, M. S. P.: The spectral theory of periodic differential equations. Scottish Academic Press 1973Google Scholar
  20. 20.
    Enss V.: A note on Hunziker's theorem. Commun. math. Phys.52, 233–238 (1977)Google Scholar
  21. 21.
    Enss, V.: Asymptotic completeness for quantum mechanical potential scattering. Commun. math. Phys.61, 258–291 (1978)Google Scholar
  22. 22.
    Gross, H., Grümm, H. R., Narnhofer, H., Thirring, W.: Algebraic theory of Coulomb scattering. Acta Phys. Austr.40, 97–103 (1974)Google Scholar
  23. 23.
    Hepp, K.: Scattering theory in the Heisenberg ferromagnet. Phys. Rev.135, 95–97 (1972)Google Scholar
  24. 24.
    Hörmander, L.: The existence of wave operators in scattering theory. Math. Z.146, 69–91 (1976)Google Scholar
  25. 25.
    Jost, R.: The general theory of quantized fields. Providence, RI: American Mathematical Society 1965Google Scholar
  26. 26.
    Klein, O.: Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Physik53, 157–165 (1929)Google Scholar
  27. 27.
    Kuroda, S.: Scattering theory for differential operators I. J. Math. Soc. Japan25, 75–104 (1973)Google Scholar
  28. 28.
    Lavine, R. B.: Scattering theory for long range potentials. J. Funct. Anal.5, 368–382 (1970)Google Scholar
  29. 29.
    Lax, P., Phillips, R. S.: Scattering theory. New York, London: Academic Press 1967Google Scholar
  30. 30.
    Levitan, B., Sargstan, I.: Introduction to spectral theory. Am. Math. Soc. Monograph. Transl.39, 1975Google Scholar
  31. 31.
    Magnus, W., Winkler, S.: Hill's equation. New York: Wiley 1966Google Scholar
  32. 32.
    Pearson, D.: General theory of potential scattering with absorption at local singularities. Helv. Phys. Acta47, 249–264 (1974)Google Scholar
  33. 33.
    Pearson, D.: A generalization of the Birman trace theorem. J. Funct. Anal.28, 182–186 (1978)Google Scholar
  34. 34.
    Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. New York, London: Academic Press 1972Google Scholar
  35. 35.
    Reed M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis. New York, London: Academic Press 1975Google Scholar
  36. 36.
    Reed, M., Simon, B.: Methods of modern mathematical physics. III. Scattering theory. New York, London: Academic Press 1979Google Scholar
  37. 37.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York, London: Academic Press 1978Google Scholar
  38. 38.
    Ruelle, D.: A remark on bound states in potential scattering theory. Nuovo Cimento61A, 655–662 (1969)Google Scholar
  39. 39.
    Ruelle, D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta35, 147–163 (1962)Google Scholar
  40. 40.
    Ruijenaars, S., Bongaarts, P.: Scattering theory for one-dimensional step potentials. Ann. Inst. Henri Poincaré26A, 1–17 (1977)Google Scholar
  41. 41.
    Semenov, Yu.: Wave operators for the Schrödinger equation with strongly singular short range potentials. Lett. Math. Phys.1, 457–462 (1977)Google Scholar
  42. 42.
    Simon, B.: Lectures on trace ideal methods. In: London Mathematical Society Lecture Notes. Cambridge: Cambridge University Press 1979Google Scholar
  43. 43.
    Simon, B.: Geometric methods in multiparticle quantum systems. Commun. math. Phys.55, 259–274 (1977)Google Scholar
  44. 44.
    Simon, B.: N-body scattering in the two cluster region. Commun. math. Phys.58, 205–210 (1978)Google Scholar
  45. 45.
    Sinha, K.: On the absolutely and singularly continuous subspace in scattering theory. Ann. Inst. Henri Poincaré26A, 263–277 (1977)Google Scholar
  46. 46.
    Streater, R. F.: Spin wave scattering. In: Scattering theory in mathematical physics, 273–298. Dordrecht, Stuttgart: Reidel 1974Google Scholar
  47. 47.
    Wilcox, C.: Scattering states and wave operators in the abstract theory of scattering. J. Funct. Anal.12, 257–274 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • E. B. Davies
    • 1
  • B. Simon
    • 1
    • 2
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA
  2. 2.Department of PhysicsPrinceton UniversityUSA

Personalised recommendations