Advertisement

Archiv der Mathematik

, Volume 64, Issue 2, pp 144–149 | Cite as

A new convolution theorem for the Stieltjes transform and its application to a class of singular integral equations

  • H. M. Srivastava
  • Vu Kim Tuan
Article

Keywords

Integral Equation Singular Integral Equation Convolution Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. L.Butzer and R. J.Nessel, Fourier Analysis and Approximation. Basel-Stuttgart 1971.Google Scholar
  2. [2]
    A.Erdélyi, W.Magnus, F.Oberhettinger, and F. G.Tricomi, Tables of Integral Transforms, Vols. I and II. New York-London-Toronto 1954.Google Scholar
  3. [3]
    F. D.Gakhov, Boundary Value Problems (Edited translation prepared from the second revised and enlarged Russian edition, 1963). Reading, Massachusetts-London 1966; Reprinted, New York 1990.Google Scholar
  4. [4]
    I. I.Hirschman and D. V.Widder, The Convolution Transform. Princeton, New Jersey 1955.Google Scholar
  5. [5]
    O. I.Marichev, Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables. New York-Brisbane-Chichester-Toronto 1983.Google Scholar
  6. [6]
    H. M.Srivastava and R. G.Buschman, Theory and Applications of Convolution Integral Equations. Dordrecht-Boston 1992.Google Scholar
  7. [7]
    E. M.Stein, Singular Integrals. Princeton, New Jersey 1970.Google Scholar
  8. [8]
    E. C.Titchmarsh, Introduction to the Theory of Fourier Integrals, Second edition. Oxford-London-New York 1948.Google Scholar
  9. [9]
    D. V.Widder, The Laplace Transform. Princeton, New Jersey 1946.Google Scholar
  10. [10]
    D. V.Widder, An Introduction to Transform Theory. New York-London 1971.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • H. M. Srivastava
    • 1
  • Vu Kim Tuan
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada
  2. 2.Institute of MathematicsNational Centre for Scientific ResearchesBo Ho, HanoiVietnam

Personalised recommendations