Experimental & Applied Acarology

, Volume 4, Issue 3, pp 301–318 | Cite as

Evolution of pseudo-arrhenotoky

  • M. W. Sabelis
  • C. J. Nagelkerke


In arrhenotokous arthropods, males arise from unfertilized eggs. Hence, by controlling the fertilization process mothers can adjust the sex ratio in their offspring. In pseudo-arrhenotokous phytoseiid mites, however, males are haploid, but arise from fertilized eggs. The haploid state is achieved through elimination of the paternal chromosome set during embryonic development. It is shown in this paper that phytoseiid females can control the sex ratio in their offspring and that this control seems as flexible as in arrhenotokous arthropods. As predicted by current evolutionary theory of sex allocation, sex ratios approached half males/half females under random mating, whereas a female bias was observed under sib-mating. The importance of these results for understanding the adaptive significance of pseudo-arrhenotoky is discussed. It is suggested that arrhenotoky is selected for when there is a substantial risk to the females of remaining unmated. When this risk of becoming a ‘wall-flower’ is low, pseudo-arrhenotoky may evolve because it retains the possibility to reinstal lost genetic information in the maternally derived chromosome by using the paternal chromosome as a template for DNA-repair. The retention of the diploid state in males during embryonic development may thus have certain advantages. It is argued that pseudo-arrhenotoky may be an adaptive genetic system under certain conditions, and not an unstable system that readily reverts to diploidy or evolves towards arrhenotoky or thelytoky.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amano, H. and Chant, D.A., 1978. Some factors affecting reproduction and sex ratios in two species of predacious mites,Phytoseiulus persimilis A.-H. andAmblyseius andersoni (Chant) (Acarina: Phytoseiidae). Can. J. Zool., 56: 1593–1607.Google Scholar
  2. Badii, M.H. and McMurtry, J.A., 1984. Life history of and life table parameters forPhytoseiulus longipes with comparative studies forP. persimilis andTyphlodromus occidentalis (Acarina: Phytoseiidae). Acarologia, 25: 111–123.Google Scholar
  3. Ballard, R.C., 1954. The biology of the predacious miteTyphlodromus fallacis (Garman) (Phytoseiidae) at 78°F. Ohio J. Sci., 54: 175–179.Google Scholar
  4. Blommers, L., 1974. Preliminary studies on two predators (Acarina: Phytoseiidae) of the spider miteTetranychus neocaledonicus André (Acarina: Tetranychidae). Z. Angew. Entomol., 75: 315–321.Google Scholar
  5. Blommers, L., 1976. Capacities for increase and predation inAmblyseius bibens (Acarina: Phytoseidae). Z. Angew. Entomol., 81: 225–244.Google Scholar
  6. Bounfour, M. and McMurtry, J.A., 1987. Biology and ecology ofEuseius scutalis (Athias-Henriot) (Acarina: Phytoseiidae). Hilgardia, 55: 1–23.Google Scholar
  7. Brown, S.W. and Nur, U., 1964. Heterochromatic chromosomes in the coccids. Science, 145: 130–136.PubMedGoogle Scholar
  8. Bull, J.J., 1979. An advantage for the evolution of male haploidy and systems with similar genetic transmission. Heredity, 43: 361–381.Google Scholar
  9. Bull, J.J., 1983. The Evolution of Sex Chromosomes and Sex Determining Mechanisms. Benjamin and Cummings, Menlo Park, Calif., 316 pp.Google Scholar
  10. Burrell, R.W. and McCormick, W.J., 1964.Typhlodromus andAmblyseius (Acarina: Phytoseiidae) as predators on orchard mites. Ann. Entomol. Soc. Am., 57: 483–487.Google Scholar
  11. Cavalier-Smith, T., 1978. Nuclear volume control by nucleo-skeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci., 34: 247–278.PubMedGoogle Scholar
  12. Charlet, L.D. and McMurtry, J.A., 1977. Systematics and bionomics of predaceous and phytophagous mites associated with pine foliage in California. Part III. Laboratory studies on the biology of the phytoseiidsMetaseiulus validus (Chant) andTyphloseiopsis pini (Chant). Hilgardia, 45: 211–236.Google Scholar
  13. Charnov, E.L., 1982. The Theory of Sex Allocation. Monographs in Population Biology, 18. Princeton University Press, Princeton, NJ, 355 pp.Google Scholar
  14. Colwell, R.K., 1981. Group selection is implicated in the evolution of female biased sex ratios. Nature, 29: 401–404.Google Scholar
  15. Croft, B.A. and Jorgensen, C.D., 1969. Life history ofTyphlodromus mcgregori (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 62: 1261–1267.Google Scholar
  16. Croft, B.A. and McMurtry, J.A., 1972. Comparative studies on four strains ofTyphlodromus occidentalis Nesbitt (Acarina: Phytoseiidae). IV. Life history studies. Acarologia, 13: 460–470.Google Scholar
  17. De Moraes, G.J. and McMurtry, J.A., 1981. Biology ofAmblyseius citrifolius (Denmark & Muma) (Acarina: Phytoseiidae). Hilgardia, 49: 1–29.Google Scholar
  18. Dinh, N.V., Janssen, A. and Sabelis, M.W., 1988. Reproductive success ofAmblyseius idaeus andA. anonymus on a diet of two-spotted spider mites. Exp. Appl. Acarol., 4: 41–51.Google Scholar
  19. El-Banhawy, E.M., 1975. Biology and feeding behaviour of the predatory mite,Amblyseius brazilii (Mesostigmata: Phytoseiidae). Entomophaga, 20: 353–360.Google Scholar
  20. Ezulike, T.O. and Odebiyi, J.A., 1985. Life history ofAmblyseius fustis (Pritchard & Baker), an indigenous predator of the cassava red mite,Oligonychus gossypii (Zacher) in South Western Nigeria. Insect Sci. Applic., 6: 193–197.Google Scholar
  21. Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford University Press, Oxford, 298 pp.Google Scholar
  22. Frank, S.A., 1985. Hierarchical selection theory and sex ratios. II. On applying the theory and a test with fig wasps. Evolution, 39: 949–964.Google Scholar
  23. Frank, S.A., 1986. Hierarchical selection theory and sex ratios. I. General solutions for structured populations. Theor. Popul. Biol., 29: 312–243.PubMedGoogle Scholar
  24. Friese, D.D. and Gilstrap, F.E., 1982. Influence of prey availability on reproduction and prey consumption ofPhytoseiulus persimilis, Amblyseius californicus andMetaseiulus occidentalis (Acarina: Phytoseiidae). Int. J. Acarol., 8: 85–89.Google Scholar
  25. Hamilton, W.D., 1967. Extraordinary sex ratios. Science, 156: 477–478.PubMedGoogle Scholar
  26. Helle, W and Sabelis, M.W. (Editors), 1985. Spider Mites, Their Biology, Natural Enemies and Control. World Crop Pests Vol. 1B, Elsevier, Amsterdam, 458 pp.Google Scholar
  27. Helle, W., Bolland, H.R., van Arendonk, R., de Boer, R., Schulten, G.G.M. and Russell, V.M., 1978. Genetic evidence for biparental males in haplodiploid predator mites (Acarina: Phytoseiidae). Genetica, 49: 165–171.Google Scholar
  28. Hoy, M.A., 1979. Parahaploidy of the “arrhenotokous” predatorMetaseiulus occidentalis (Acarina: Phytoseiidae) demonstrated by X-irradiation of males. Entomol. Expl. Appl., 26: 97–104.Google Scholar
  29. Hoy, M.A., 1984. Genetical improvement of a biological control agent: Multiple pesticide resistance and non-diapause inMetaseiulus occidentalis (Nesbitt) (Phytoseiidae). In: D.A. Griffiths and C.E. Bowman (Editors), Acarology, 6. Ellis Horwood, Chichester, pp. 673–679.Google Scholar
  30. Hoy, M.A., 1985. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu. Rev. Entomol., 30: 345–370.Google Scholar
  31. Knisley, C.B. and Swift, F.C., 1971. Biological studies ofAmblyseius umbraticus (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 64: 813–822.Google Scholar
  32. Ma, Wei-Lan, Laing, J.E., 1973. Biology, potential for increase and prey consumption ofAmblyseius chilenesis (Dosse) (Acarina: Phytoseiidae). Entomophaga, 18: 47–60.Google Scholar
  33. Mallik, B. and Channasavanna, G.P., 1983. Life history and life tables ofTetranychus ludeni and its predatorAmblyseius longispinosus (Acari: Tetranychidae, Phytoseiidae). Indian J. Acarol., 8: 1–12.Google Scholar
  34. Maynard Smith, J., 1978. The Evolution of Sex. Cambridge University Press, London, 209 pp.Google Scholar
  35. McMurtry, J.A. and Scriven, G.T., 1964. Biology of the predaceous miteTyphlodromus rickeri (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am. 57: 362–367.Google Scholar
  36. Mentink, P.J.M., 1982. Sex ratio en populatiedichtheid bij de roofmijtMetaseiulus occidentalis. M. Sc. Thesis, Agricultural University Wageningen, The Netherlands, 20 pp.Google Scholar
  37. Nelson-Rees, W.A., 1962. The effects of radiation damaged heterochromatic chromosomes on male fertility in the mealy bugPlanococcus citri (Risso). Genetics, 47: 661–683.PubMedGoogle Scholar
  38. Nelson-Rees, W.A., Hoy, M.A. and Roush, R.T., 1980. Heterochromatization, chromatin elimination and haploidization in the parahaploid miteMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma (Berl.), 77: 263–276.Google Scholar
  39. Overmeer, W.P.J., 1981. Notes on breeding phytoseiid mites from orchards in the laboratory. Meded. Fac. Landbouwwet. Rijksuniv. Gent, 46: 503–509.Google Scholar
  40. Prasad, V., 1967. Biology of the predatory mitePhytoseiulus macropilis in Hawaii (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 60: 905–908.Google Scholar
  41. Rasmy, A.H. and El-Banhawy, E.M., 1975. Biology and predatory efficiency of two phytoseiid mites as affected by long-term pollen feeding. Entomophaga, 20: 93–95.Google Scholar
  42. Sabelis, M.W., 1981. Biological control of two-spotted spider mites using phytoseiid predators. Part I. Modelling the predator-prey interaction at the individual level. Agric. Res. Rep. 910, Pudoc, Wageningen, 242 pp.Google Scholar
  43. Sabelis, M.W., 1985. Sex allocation. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, their Biology, Natural Enemies and Control. World Crop Pests Vol. 1B, Elsevier, Amsterdam, pp. 83–94.Google Scholar
  44. Sabelis, M.W. and Dicke, M., 1985. Long-range dispersal and searching behaviour. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, their Biology, Natural Enemies and Control. World Crop Pests Vol. IB, Elsevier, Amsterdam, pp. 141–160.Google Scholar
  45. Sabelis, M.W. and van der Meer, J., 1986. Local dynamics of the interaction between predatory mites and two-spotted spider mites. In: J.A.J. Metz and O. Diekmann (Editors), The Dynamics of Physiologically Structured Populations. Lect. Notes Biomath., 68: 322–344.Google Scholar
  46. Sanderson, J.P. and McMurtry, J.A., 1984. Life history studies of the predacious mitePhytoseius hawaiiensis. Entomol. Exp. Appl., 35: 227–234.Google Scholar
  47. Schulten, G.G.M., 1985. Pseudo-arrhenotoky. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, their Biology, Natural, Enemies, and Control. World Crop Pests, Vol. 1B, Elsevier, Amsterdam, pp. 67–72.Google Scholar
  48. Shih, C.I.I. and Shieh, J.N., 1979. Biology life table, predation potential and intrinsic rate of increase ofAmblyseius longispinosus (Evans). Plant Prot. Bull. Taiwan, 21: 175–183.Google Scholar
  49. Shih, C.I.I., Poe, S.L. and Cromroy, H.L.M., 1979. Biology and predation ofPhytoseiulus macropilis onTetranychus urticae. Fla. Entomol., 62: 48–53.Google Scholar
  50. Smith, R.H. and Shaw, M.R., 1980. Haplodiploid sex ratios and the mutation rate. Nature, 287: 728–729.Google Scholar
  51. Takafuji, A. and Chant, D.A., 1976. Comparative studies on two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey. Res. Popul. Ecol., 17: 255–310.Google Scholar
  52. Tanaka, M. and Kashio, T., 1977. Biological studies onAmblyseius largoensis Muma (Acarina: Phytoseiidae) as a predator of the citrus red mite,Panonychus citri (McGregor) (Acarina: Tetranychidae). Bull. Fruit-Tree Res. Stn. Japan, D1: 49–67.Google Scholar
  53. Tanigoshi, L.K. and McMurtry, J.A., 1977. The dynamics of predation ofStethorus picipes (Coleoptera: Coccinellidae) andTyphlodromus floridanus on the preyOligonychus punicae (Acarina: Phytoseiidae, Tetranychidae). Part I. Comparative life history and life table studies. Hilgardia, 45: 237–261.Google Scholar
  54. Tanigoshi, L.K., Hoyt, S.C., Brown, R.W. and Logan, J.A., 1975. Influence of temperature on population increase ofMetaseiulus occidentalis (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 68: 979–986.Google Scholar
  55. Tanigoshi, L.K., Fagerlund, J. and Nishio-Wong, J.Y., 1981. Significance of temperature and food resources to the developmental biology ofAmblyseius hibisci (Chant) (Acarina: Phytoseiidae). Z. Angew. Entomol., 92: 409–419.Google Scholar
  56. Taylor, P.D. and Sauer, A., 1980. The selective advantage of sex-ratio homeostasis. Am. Nat., 116: 305–310.Google Scholar
  57. Veltkamp, J.W., 1968. Effect of prey density on the sex ratio in the progeny ofTyphlodromus longipilis Nesbitt (Phytoseiidae). Neth. J. Zool., 19: 286–287.Google Scholar
  58. Waage, J.K. and Lane, J.A., 1984. The reproductive strategy of a parasitic wasp. II. Sex allocation and local mate competition inTrichogramma evanescens. J. Anim. Ecol., 53: 417–426.Google Scholar
  59. Waage, J.K. and Sook Ming, Ng., 1984. The reproductive strategy of a parasitic wasp. I. Optimal progeny and sex allocation inTrichogramma evanescens. J. Anim. Ecol., 53: 401–405.Google Scholar
  60. Werren, J.H., 1980. Sex ratio adaptations to local mate competition in a parasitic wasp. Science, 208: 1157–1159.Google Scholar
  61. Werren, J.H., 1983. Sex ratio evolution under local mate competition in a parasitic wasp. Evolution, 37: 116–124.Google Scholar
  62. Wiegers, F.P., 1981. Het verband tussen eilegsnelheid en sex ratio bijMetaseiulus occidentalis. M.Sc. Thesis, Agricultural University, Wageningen, The Netherlands, 15 pp.Google Scholar
  63. Wilson, D.S. and Colwell, R.K., 1981. Evolution of sex ratio in structured demes. Evolution, 35: 882–897.Google Scholar
  64. Xin, J. Liang, L. and Ke, L., 1984. Biology and utilization ofAmblyseius pseudolongispinosus (Acarina: Phytoseiidae) in China. In: D.A. Griffiths and C.E. Bowmans (Editors), Acarology, 6. Ellis Horwood, Chichester, pp. 693–698.Google Scholar

Copyright information

© Elsevier Science Publishers B.V. 1988

Authors and Affiliations

  • M. W. Sabelis
    • 1
  • C. J. Nagelkerke
    • 1
  1. 1.Dept. of Population BiologyUniversity of LeidenLeiden(The Netherlands)
  2. 2.Dept. of Pure and Applied EcologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations