Experimental & Applied Acarology

, Volume 4, Issue 3, pp 277–300 | Cite as

Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites

  • B. A. Croft
  • H. E. Van De Baan


Among tetranychid spider mites and their phytoseiid predators, the evolution of pesticide resistance is a common event. In most cases, resistance is based on a single dominant or semidominant gene. However, polygenic, less-stable resistance often develops under laboratory selection. More rapid development of pesticide resistance in spider mites and predatory mites than among other arthropods might partly be due to their arrhenotokous reproduction. For both groups of mites, little study has been done on population genetic factors influencing pesticide resistance. A few studies have focussed on ecological factors. An important ecological factor influencing resistance evolution is the level of immigration of susceptible individuals into treated habitats. Spider mites and predatory mites both tend to reside in treated habitats at high levels and to immigrate at only modest levels from untreated habitats. This favors rapid resistance development. Another factor contributing to rapid resistance evolution in both mite groups is their rapid reproductive rate. A food-limitation factor may limit resistance evolution under field conditions more in predatory mites than spider mites. After treatment by a pesticide, spider mites have an unlimited food source, whereas predatory mites have a decimated food source (their prey), which leads to reduced reproduction, starvation, or migration. Because of the common occurrence of resistance among both mite groups, a strategy of resistance management is often feasible for them. Case histories of IPM where the population dynamics and genetics of pesticide resistance of tetranychid and phytoseiid mites have been considered are discussed. The overall conclusion is that greater understanding of the population genetics and ecology of these species will provide for improved systems of resistance management and IPM.


Food Source Ecological Factor Treated Habitat Reproductive Rate Spider Mite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous, 1957. World Health Expert Committee on Insecticides, 7th Report. WHO Tech. Rep. Ser., No. 125, 88 pp.Google Scholar
  2. Anonymous, 1986. Pesticide Resistance: Strategies and Tactics for Management. National Academy of Science, Washington, DC, 471 pp.Google Scholar
  3. Chang, C.K. and Whalon, M.E., 1986. Hydrolysis of permethrin by pyrethroid esterases from resistant and susceptible strains ofAmblyseius fallacis (Acari: Phytoseiidae). Pestic. Biochem. Physiol., 25: 446–452.Google Scholar
  4. Cranham, J.E. and Helle, W., 1985. Pesticide resistance in Tetranychidae. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, Amsterdam, pp. 405–419.Google Scholar
  5. Croft, B.A., 1981. Use of crop protection chemicals for integrated pest management. Philos. Trans. R. Soc., London, Ser. B, 295: 125–141.Google Scholar
  6. Croft, B.A., 1982. Developed resistance to insecticides in apple arthropods: A key to pest control failures and successes in North America. Entomol. Exp. Appl., 31: 88–110.Google Scholar
  7. Croft, B.A. and Brown, A.W.A., 1975. Responses of arthropod natural enemies to pesticides. Annu. Rev. Entomol., 20: 285–335.PubMedGoogle Scholar
  8. Croft, B.A., and Hull, L.A., 1988. Chemical control and resistance in tortricoid pests of pome and stone fruits. In: L.P.S. van der Geest and H.H. Evenhuis (Editors), Tortricoid Pests. Elsevier, Amsterdam, (in press).Google Scholar
  9. Croft, B.A. and Morse, J.G., 1979. Recent advances in natural enemy-pesticide research. Entomophaga, 24: 3–11.Google Scholar
  10. Croft, B.A. and Riedl, H.W., 1987. Chemical control and resistance to pesticides in the codling moth,Cydia pomonella In: L.P.S. van der Geest and H.H. Evenhuis (Editors), Tortricoid Pests. Elsevier, Amsterdam (in press).Google Scholar
  11. Croft, B.A. and Roush, R.T., 1987. Technical and policy issues in management of pesticide resistance in arthropod pests. Report presented ataaas Symp., 14–19 February, Chicago, Ill., 27 pp. (unpublished)Google Scholar
  12. Croft, B.A. and Strickler, K., 1983. Natural enemy resistance to pesticides: documentation, characterization, theory, & application. In: G.P. Georghiou and T. Saito (Editors), Pest Resistance to Pesticides. Plenum Press, New York, pp. 669–702.Google Scholar
  13. Croft, B.A. and Whalon, M.E., 1983. The inheritance and persistence of permethrin resistance in the predatory mite,Amblyseius fallacis. Environ. Entomol., 12: 215–218.Google Scholar
  14. Croft, B.A., Miller, R.W., Nelson, R.D. and Westigard, P.H., 1984. Inheritance of early stage resistance to cyhexatin and formetanate inTetranychus urticae Koch (Acarina: Tetranychidae). J. Econ. Entomol., 77: 574–778.Google Scholar
  15. Croft, B.A., Hoyt, S.C. and Westigard, P.H., 1987. Spider mite management on pome fruits, revisited: Organotin and acaricide resistance management. J. Econ. Entomol., 80: 304–311.Google Scholar
  16. Crozier, R.H., 1985. Adaptive consequences of male-haploidy. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1A. Elsevier, Amsterdam, pp. 201–219.Google Scholar
  17. Dennehy, T.J. and Granett, J., 1984a. Spider mite resistance to dicofol in San Joaquin Valley cotton: inter- and intraspecific variability in susceptibility of three species ofTetranychus (Acari: Tetranychidae). J. Econ. Entomol., 77: 1381–1385.Google Scholar
  18. Dennehy, T.J. and Granett, J., 1984b. Monitoring dicofol-resistant spider mites (Acari: Tetranychidae) in California cotton. J. Econ. Entomol., 1386–1392.Google Scholar
  19. Dittrich, V., 1975. Acaricide resistance in mites. Z. Angew. Entomol., 78: 28–45.Google Scholar
  20. Edge, V.E and James, D.G., 1986. Organotin resistance inTetranychus urticae (Acari: Tetranychidae) in Australia. J. Econ. Entomol., 79: 1477–1483.Google Scholar
  21. Falconer, D.S., 1981. Introduction to Quantitative Genetics, 2nd edition. Longman, New York, 340 pp.Google Scholar
  22. Flexner, J., 1987. Organotin resistance inTetranychus urticae on pear: Components and their integration for resistance management. Ph.D. Thesis, Oregon State Univ., Corvallis, OR, 103 pp.Google Scholar
  23. Fournier, D.M., Pralavorio, M., Berge, J.B. and Cuany, A., 1985. Pesticide resistance in Phytoseiidae. In: W. Helle and M.W. Sabelis (Editors), Spider Mites: Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, Amsterdam, pp. 423–430.Google Scholar
  24. Georghiou, G.P. and Taylor, C.E., 1976. Pesticide resistance as an evolutionary phenomenon. In: Proc. 15th Int. Congr. Entomology. National Academy Press, Washington, DC, pp 759–785.Google Scholar
  25. Georghiou, G.P. and Taylor, C.E., 1986. Factors influencing the evolution of resistance. In: Pesticide Resistance: Strategies and Tactics of Management.Nas/nrc. National Academy Press, Washington, DC, pp. 143–156.Google Scholar
  26. Hartl, D.L., 1971. Some aspects of natural selection in arrhenotokous populations. Am. Zool., 11: 309–325.Google Scholar
  27. Havron, A., 1983. Studies toward selection ofAphytis wasps for pesticide resistance. Ph.D. Thesis, Hebrew University of Jerusalem, Israel, 186 pp.Google Scholar
  28. Headly, J.C. and Hoy, M.A., 1986. The economics of integrated mite management in almonds. Calif. Agric., 40: 1–2, 28–30.Google Scholar
  29. Helle, W., 1984. Aspects of pesticide resistance in mites. In: D.A. Griffiths and C.E. Bowman (Editors), Acarology VI, Vol. 1. Ellis Harwood Ltd., Chichester, Great Britain, pp. 122–131.Google Scholar
  30. Helle, W., 1985 Resistance in acarina: Mites. Adv. Acarol., 2: 71–93.Google Scholar
  31. Helle, W. and Pijnacker, L.P., 1985. Parthenogenesis, chromosomes and sex. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1A Elsevier, Amsterdam, pp. 129–138.Google Scholar
  32. Helle, W. and Sabelis, M.W. (Editors), 1985. Spider Mites; Their Biology, Natural Enemies and Control. Elsevier, Amsterdam, Vols. 1A (405 pp.) and 1B (458 pp.).Google Scholar
  33. Helle, W. and van de Vrie, M., 1975. Problems with spider mites. Outlook Agric., 8: 119–125.Google Scholar
  34. Herne, D.H.C., Cranham, J.E. and Easterbrock, M.A., 1979. New acaricides to control resistant mites. In: J.G. Rodriguez (Editor), Recent Advances in Acarology, Vol. 1. Academic, New York, pp. 95–104.Google Scholar
  35. Hoy, M.A., 1985. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu. Rev. Entomol., 30: 345–370.Google Scholar
  36. Hoy, M.A. and Cave, F.E., 1986. Screening for thelytoky in the parahaploid phytoseiid,Metaseiulus occidentalis. Exp. Appl. Acarol., 2: 273–276.Google Scholar
  37. Hoy, M.A. and Knop, N.F., 1981. Selection for and genetic analysis of permethrin resistance inMetaseiulus occidentalis: genetic improvement of a biological control agent. Entomol. Exp. Appl., 30: 10–18.Google Scholar
  38. Hoy, M.A., Knop, N.F. and Joos, J.L., 1980. Pyrethroid resistance persists in spider mite predator. Calif. Agric., 34: 11–12.Google Scholar
  39. Hoy, M.A., Westigard, P.H. and Hoyt, S.C., 1983. Release and evaluation of a laboratory-selected, pyrethroid-resistant strain of the predaceous miteMetaseiulus occidentalis (Acari: Phytoseiidae) in southern Oregon pear orchards and a Washington apple orchard. J. Econ. Entomol., 70: 383–388.Google Scholar
  40. Hoy, M.A., Groot, J.J.R. and van de Baan, H.E., 1985. Influence of aerial dispersal on persistence and spread of pesticide-resistantMetaseiulus occidentalis in California almond orchards. Entomol. Exp. Appl., 37: 17–31.Google Scholar
  41. Hoyt, S.C., 1969a. Population studies of five mites species on apple in Washington. Proc. 2nd Int. Congr. Acarology, Sutton Bonington, Great Britain, 1967, pp. 117–133.Google Scholar
  42. Hoyt, S.C., 1969b. Integrated chemical control of insects and biological control of mites on apple in Washington. J. Econ. Entomol., 62: 74–86.Google Scholar
  43. Huffaker, C.B., van de Vrie, M. and McMurtry, J.M., 1970. Ecology of tetranychid mites and their natural enemies: a review. II. Tetranychid populations and their possible control by predators: an evaluation. Hilgardia, 40: 391–458.Google Scholar
  44. Inoue, K., 1979. The change in susceptibility of mite populations to dicofol and genetic analysis of dicofol-resistance in the citrus red spider mite,Panonychus citri (McG.) J. Pestic. Sci., 4: 337–344.Google Scholar
  45. Jeppson, L.R., Keifer, H.H. and Baker, E.W., 1975. Mites Injurious to Economic Plants. Univ. California Press, Berkeley, 614 pp.Google Scholar
  46. Kuwahara, M., 1977. The development and inheritance of resistance in the Kanzawa spider mite,Tetranychus kanzawai Kishida, selected with chlordimeform, dicofol, and phenthoate. Jpn. J. Appl. Entomol. Zool., 21: 163–168.Google Scholar
  47. Markkula, M. and Kurppa, S., 1985. Resistance of insects and mites to pesticides in Finland. Ann. Agric. Fenn., 24: 161–174.Google Scholar
  48. McMurtry, J.A., Huffaker, C.B. and van de Vrie, M., 1970. Ecology of tetranychid mites and their natural enemies: a review. I. Tetranychid enemies: their biological characteristics and the impact of spray practices. Hilgardia, 40: 331–390.Google Scholar
  49. Morse, J.G. and Croft, B.A., 1981. Resistance to azinphosmethyl in a predator-prey mite system in greenhouse experiments. Entomophaga, 26: 191–202.Google Scholar
  50. Overmeer, W.P.J. and van Zon, A.Q., 1973. Genetics of dicofol resistance inTetranychus urticae Koch (Acari: Tetranychidae). Z. Angew. Entomol., 73: 225–230.Google Scholar
  51. Overmeer, W.P.J., van Zon, A.Q. and Helle, W., 1975. The stability of acaricide resistance in spider mite (Tetranychus urticae) populations from rose houses. Entomol. Exp. Appl., 18: 68–74.Google Scholar
  52. Pree, D.J., 1987. Inheritance and management of cyhexatin and dicofol resistance in the European red mite,Panonychus ulmi (Koch). J. Econ. Entomol., 80: 1106–1112.Google Scholar
  53. Riedl, H., Seaman, A. and Henrie, F., 1985. Monitoring susceptibility to azinphosmethyl in field populations of the codling moth (Lepidoptera: Torticidae) with pheromone traps. J. Econ. Entomol., 78: 692–699.Google Scholar
  54. Rosenheim, J.A. and Hoy, M.A., 1986. Interspecific variation in levels of pesticide resistance in field populations of a parasitoid,Aphytis melinus (Hymenoptera: Aphelinidae): The role of past selections pressures. J. Econ. Entomol., 79: 1161–1173.Google Scholar
  55. Roush, R.T. and Croft, B.A., 1986. Experimental population genetics and ecology studies of resistance in arthropods. In: Pesticide Resistance: Strategies and Tactics for Management.nrs/nrc Press, Washington, DC, pp. 257–270.Google Scholar
  56. Roush, R.T. and Hoy, M.A., 1981. Laboratory, glasshouse, and field studies of artifically selected carbaryl resistance inMetaseiulus occidentalis. J. Econ. Entomol., 74: 142–147.Google Scholar
  57. Roush, R.T. and McKenzie, J., 1987. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol., 32: 361–380.PubMedGoogle Scholar
  58. Schulten, G.G.M., 1985. Pseudo-arrhenotoky. In: W. Helle and M.W. Sabelis (Editors), Spider Mites; Their Biology, Natural Enemies and Control, Vol. 1B. Elsevier, Amsterdam, pp. 64–72.Google Scholar
  59. Schulten, G.G.M. and van de Klashorst, G., 1974. Genetics of resistance to parathion and dementon-S-methyl inPhytoseiulus persimilis A.H. In: Proc. 4th Int. Congr. Acarology. Hungarian Academy of Science, pp. 519–524.Google Scholar
  60. Strickler, K. and Croft, B.A., 1982. Selection for permethrin resistance in the predatory mite,Amblyseius fallacis Garman (Acarina: Phytoseiidae). Entomol. Exp. Appl., 31: 339–345.Google Scholar
  61. Tabashnik, B.E., 1986. Evolution of pesticide resistance in predator-prey systems. Bull. Entomol. Soc. Am., 32: 156–161.Google Scholar
  62. Tabashnik, B.E. and Croft, B.A., 1982. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ. Entomol., 11: 1137–1144.Google Scholar
  63. Tabashnik, B.E. and Croft, B.A., 1985. Evolution of pesticide resistance in apple pests and their natural enemies. Entomophaga, 30: 37–49.Google Scholar
  64. Van de Vrie, M. and McMurtry, J.A., 1972. Ecology of tetranychid mites and their natural enemies. III. Biology, ecology and pest status and host plant relations of tetranychids. Hilgardia, 41: 343–432.Google Scholar
  65. Welty, C., Reissig, W.H., Dennehy, T.J. and Weires, R.W., 1987. Cyhexatin resistance in New York populations of European red mite,Panonychus ulmi (Acari: Tetranychidae). J. Econ. Entomol., 80: 230–236.Google Scholar
  66. Whalon, M.E. and Croft, B.A., 1985. Dispersal of apple pests and natural enemies in Michigan. Mich. St. Univ. Res. Rep. 467, 23 pp.Google Scholar
  67. Whalon, M.E., Croft, B.A. and Mowry, T.M., 1982. Establishment of a permethrin-resistant predatory mite,Amblyseius fallacis, in a Michigan apple orchard. Environ. Entomol., 11: 1096–1099.Google Scholar
  68. Zilbermints, I.V., Fadeyev, Yu.N. and Zhuravleva, L.M., 1968. On the inheritance of the resistance to Keltan inTetranychus telarius L. Genet. Akad. Nauk. SSSR, 5: 96–106.Google Scholar
  69. Zilbermints, I.V., Fadeyev, Yu.N. and Zhuravleva, L.M., 1969. Investigation of the genetics of resistance in laboratory strains of spider miteTetranychus urticae Koch. Skh. Biol., 3: 125–132.Google Scholar

Copyright information

© Elsevier Science Publishers B.V. 1988

Authors and Affiliations

  • B. A. Croft
    • 1
  • H. E. Van De Baan
    • 1
  1. 1.Dept. of EntomologyOregon State UniversityCorvallis(U.S.A.)

Personalised recommendations