Integral Equations and Operator Theory

, Volume 27, Issue 1, pp 10–47 | Cite as

Hilbert-Carleman and regularized determinants for linear operators

  • Israel Gohberg
  • Seymour Goldberg
  • Naum Krupnik


A general theory of regularized and Hilbert-Carleman determinants in normed algebras of operators acting in Banach spaces is proposed. In this approach regularized determinants are defined as continuous extensions of the corresponding determinants of finite dimensional operators. We characterize the algebras for which such extensions exist, describe the main properties of the extended determinants, obtain Cramer's rule and the formulas for the resolvent which are expressed via the extended tracestr(A k ) of iterations and regularized determinants.

This paper is a continuation of the paper [GGKr].

MSC 1991



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [C]. Carleman, T.,Zur Theorie der Linearen Integralgleichungen Math. Zeit., 9 (1921), 196–217.Google Scholar
  2. [DS]. Dunford, N., Schwartz, J.,Linear Operators, Vol. II. Spectral Theory, Interscience, 1963.Google Scholar
  3. [FS]. Fenyö, S., Stolle, H.,Theorie und Praxis der Linearen Integralgleichungen, Vol. I–IV, Birkhäuser, 1982–1984.Google Scholar
  4. [F]. Fredholm, I.,Sur une Classe d'Equation Fonctionelles, Acta Math. 27 (1903), 365–390.Google Scholar
  5. [GGK]. Gohberg, I., Goldberg, S., Kaashoek, M., Kaashoek, A.,Classes of Linear Operators, Vol.I, Birkhäuser Verlag, Basel, 1990.Google Scholar
  6. [GGKr]. Gohberg, I., Goldberg, S., Krupnik, N.,Traces and Determinants of Linear Operators, Integr. Equat. and Oper. Th. (to appear).Google Scholar
  7. [GK]. Gohberg, I., Krein, M.,Introduction to the Theory of Linear Non-Self Adjoint Operators, Translations AMS, 18, 1969.Google Scholar
  8. [G]. Grothendieck, A.,La Theory de Fredholm, Bull. Soc. Math. France84, (1956), 319–384.Google Scholar
  9. [H]. Hilbert, D.,Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen I., Nach. Wiss. Math. Phys. Gott. (1904), 49–91Google Scholar
  10. [I]. Itskovich, I.,On Fredholm series, Doklady AN SSSR, Vol LIX, N3, (1948), 423–426.Google Scholar
  11. [KZPS]. Krasnoselskii, M., Zabreiko, P., Pustylnik, E., Sobolevskii, P.,Integral operators in spaces of summable functions, Leyden, Noordhoff, 1976 13 (1953), 244–276.Google Scholar
  12. [M]. Mikhlin, S.,On the convergence of Fredholm series, Doklady AN SSSR, Vol. XLII, N9, (1944), 374–377.Google Scholar
  13. [P]. Pietsch, A.,Eigenvalues and s-numbers, Cambridge Studies in Advanced Math. Vol. 13, Cambridge Univ. Press, Cambridge, 1987.Google Scholar
  14. [Po]. Poincaré, H.,Remarques diverses sur l'équation de Fredholm, Acta Math. 33 (1910), 57–86.Google Scholar
  15. [R]. Ruston, A., Ruston, F.,Fredholm theory in Banach spaces, Cambridge University Press, Cambridge 1986. 141–198.Google Scholar
  16. [S1]. Simon, B.,Trace ideals and their applications, Lecture Note Series 35, London, 1979.Google Scholar
  17. [S2]. Simon, B.,Notes on Infinite Determinants of Hilbert Space Operators, Adv. Math. 24 (1977), 244–273.Google Scholar
  18. [S]. Smithies, F.,Integral Equations, Cambridge University Press, 1965.Google Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • Israel Gohberg
    • 1
  • Seymour Goldberg
    • 2
  • Naum Krupnik
    • 3
  1. 1.School of Mathematics Sackler Faculty of Exact SciencesTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA
  3. 3.Dept. of Math. and Comp. ScienceBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations