Integral Equations and Operator Theory

, Volume 30, Issue 3, pp 279–316 | Cite as

Inverse scattering in one-dimensional nonconservative media

  • Tuncay Aktosun
  • Martin Klaus
  • Cornelis van der Mee
Article

Abstract

The inverse scattering problem arising in wave propagation in one-dimensional non-conservative media is analyzed. This is done in the frequency domain by considering the Schrödinger equation with the potentialikP(x)+Q(x), wherek2 is the energy andP(x) andQ(x) are real integrable functions. Using a pair of uncoupled Marchenko integral equations,P(x) andQ(x) are recovered from an appropriate set of scattering data including bound-state information. Some illustrative examples are provided.

MSC Primary

34A55 81U40 Secondary 73D50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AKV93] Aktosun, T., Klaus, M., and van der Mee, C.:On the Riemann-Hilbert problem for the one-dimensional Schrödinger equation. J. Math. Phys.34, 2651–2690 (1993).Google Scholar
  2. [AKV97] Aktosun, T., Klaus, M., and van der Mee, C.:Wave scattering in one dimension with absorption. J. Math. Phys., to appear.Google Scholar
  3. [CS89] Chadan, K. and Sabatier, P.:Inverse Problems in Quantum Scattering Theory. 2nd ed., Springer, New York, 1989.Google Scholar
  4. [CG81] Clancey, K. and Gohberg, I.:Factorization of Matrix Functions and Singular Integral Operators. OT3, Birkhäuser, Basel, 1981.Google Scholar
  5. [DT79] Deift, P. and Trubowitz, E.:Inverse scattering on the line. Comm. Pure Appl. Math.32, 121–251 (1979).Google Scholar
  6. [Fa64] Faddeev, L. D.:Properties of the S-matrix of the one-dimensional Schrödinger equation. Amer. Math. Soc. Transl.2, 139–166 (1964) [Trudy Mat. Inst. Steklova73, 314–336 (1964) (Russian)].Google Scholar
  7. [Fe61] Feldman, I. A.:On an effective solution of certain integral equations on the line and on the half-line. Izv. Akad. Nauk Mold. SSR10 (88), 16–26 (1961) (Russian).Google Scholar
  8. [FGK94] Feldman, I., Gohberg, I., and Krupnik, N.:A method of explicit factorization of matrix functions and applications. Integral Equations Operator Theory18, 277–302 (1994).Google Scholar
  9. [GRS64] Gel'fand, I. M., Raikov, D. A., and Shilov, G. E.:Commutative Normed Rings. Chelsea Publ. Co., New York, 1964.Google Scholar
  10. [GF71] Gohberg, I. C. and Feldman, I. A.:Convolution Equations and Projection Methods for their Solution. Transl. Math. Monographs41, A.M.S., Providence, 1974 [Nauka, Moscow, 1971 (Russian)].Google Scholar
  11. [GGK93] Gohberg, I., Goldberg, S., and Kaashoek, M. A.:Classes of Linear Operators. vol. II, OT63, Birkhäuser, Basel, 1993.Google Scholar
  12. [Ja76] Jaulent, M.:Inverse scattering problems in absorbing media. J. Math. Phys.17, 1351–1360 (1976).Google Scholar
  13. [JJ72] Jaulent, M. and Jean, C.:The inverse s-wave scattering problem for a class of potentials depending on energy. Comm. Math. Phys.28, 177–220 (1972).Google Scholar
  14. [JJ76a] Jaulent, M. and Jean, C.:The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent potential. I. Ann. Inst. Henri Poincaré A25, 105–118 (1976).Google Scholar
  15. [JJ76b] Jaulent, M. and Jean, C.:The inverse problem for the one-dimensional Schrödinger equation with an energy-dependent potential. II. Ann. Inst. Henri Poincaré A25, 119–137 (1976).Google Scholar
  16. [Ka75] Kaup, D. J.:A higher-order water-wave equation and the method for solving it. Progr. Theor. Phys.54, 396–408 (1975).Google Scholar
  17. [Ne80] Newton, R. G.:Inverse scattering. I. One dimension. J. Math. Phys.21, 493–505 (1980).Google Scholar
  18. [Pa88] Partington, J. R.:An Introduction to Hankel Operators. London Math. Soc. Student Texts, Vol.13, Cambridge Univ. Press, Cambridge, 1988.Google Scholar
  19. [Po82] Power, S. C.:Hankel Operators on Hilbert Space. Research Notes in Mathematics,64, Pitman, Boston, 1982.Google Scholar
  20. [SS95] Sattinger, D. H. and Szmigielski, J.:Energy dependent scattering theory. Differ. Integral Eqs.8, 945–959 (1995).Google Scholar
  21. [SS96] Sattinger, D. H. and Szmigielski, J.:A Riemann-Hilbert problem for an energy dependent Schrödinger operator. Inverse Problems12, 1003–1025 (1996).Google Scholar
  22. [Ts81] Tsutsumi, M.:On the inverse scattering problem for the one-dimensional Schrödinger equation with an energy dependent potential. J. Math. Anal. Appl.83, 316–350 (1981).Google Scholar

Copyright information

© Birkhäuser Verlag 1998

Authors and Affiliations

  • Tuncay Aktosun
    • 1
  • Martin Klaus
    • 2
  • Cornelis van der Mee
    • 3
  1. 1.Dept. of MathematicsNorth Dakota State Univ.Fargo
  2. 2.Dept. of MathematicsVirginia Polytechnic Inst. and State Univ.Blacksburg
  3. 3.Dipartimento di MatematicaUniversità di CagliariCagliariItaly

Personalised recommendations