Advertisement

Fast decoding of non-binary first order Reed-Muller codes

  • Alexey E. Ashikhmin
  • Simon N. Litsyn
Article

Abstract

A minimum distance decoding algorithm for non-binary first order Reed-Muller codes is described. Suggested decoding is based on a generalization of the fast Hadamard transform to the non-binary case. We also propose a fast decoding algorithm for non-binary first order Reed-Muller codes with complexity proportional to the length of the code. This algorithm provides decoding within the limits guaranteed by the minimum distance of the code.

Keywords

Fast decoding algorithms Reed-Muller codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashikhmin, A., Litsyn, S.: Analysis of quasi-optimal decoding algorithms of biorthogonal codes. Radioelectronica,31(11), pp. 30–34 (1988) (in Russian), English translation: Radio Electronics Commun Syst,31(11), 26–30 (1988)Google Scholar
  2. 2.
    Ashikhmin, A., Litsyn, S.: List algorithm for search of the maximal element of Walsh transform. Radioelectronica,32(11), 15–22 (1990) (in Russian), English translation: Radio Electronics Commun Syst,32(11), 37–41 (1990)Google Scholar
  3. 3.
    Ashikhmin, A., Litsyn, S.: Fast decoding of first order Reed-Muller and related codes, submittedGoogle Scholar
  4. 4.
    Be'ery, Y., Snyders, J.: Optimal soft decision block decoders based on fast Hadamard transform, IEEE. Trans. Inf. Theory,IT-32, 355–364 (1986)Google Scholar
  5. 5.
    Berlekamp, E. R.: The technology of error-correcting codes, Proc. IEEE68, 564–593 (1980)Google Scholar
  6. 6.
    Conway, J. H., Sloane, N. J. A.: Sphere Packings, Lattices and Groups, Berlin, Heidelberg, New York: Springer 1988Google Scholar
  7. 7.
    Delsarte, P., Goethals, J.-M., Mac Williams, F.J.: On generalized Reed-Muller codes and their relatives, Info. Control,16, 403–442 (1974)Google Scholar
  8. 8.
    Glassman, J. A.: A generalization of the fast Fourier transform, IEEE Trans., v.C-19(2), (1970)Google Scholar
  9. 9.
    Golomb, S. W. (ed.), Digital communications with space applications. Prentice-Hall, Englewood Cliffs, NJ 1964Google Scholar
  10. 10.
    Good, I. J.: The Intercation algorithm and practical Fourier analysis, J. R. Stat. Soc. (London)B-20, 361–372 (1958)Google Scholar
  11. 11.
    Green, R. R.: A serial orthogonal decoder, JPL Space Programs Summary.37-39-IV, 247–253 (1966)Google Scholar
  12. 12.
    Grushko, I.: Majority logic decoding of generalized Reed-Muller codes, Problemy peredachi informatsii26(3), 12–21 (1990) (in Russian)Google Scholar
  13. 13.
    Kasami, T., Lin, S., Peterson, W.: New generalizations of the Reed-Muller codes, Part 1: Primitive codes, IEEE Trans. Inf. TheoryIT-14, 189–199 (1968)Google Scholar
  14. 14.
    Litsyn, S.: Fast algorithms for decoding orthogonal and related codes. Lecture Notes in Computer Science, vol. 539, Mattson H. F., Mora T., Rao T. R. N. (eds.) Applied Algebra, Algebraic Algorithms and Error Correcting Codes, pp. 39–47 (1991)Google Scholar
  15. 15.
    Litsyn, S., Mikhailovskaya, G., Neimirovsky, E., Shekhovtsov, O.: Fast decoding of first order Reed-Muller codes in the Gaussian channel, Problems Control Information Theory14(3), 189–201 (1985)Google Scholar
  16. 16.
    Litsyn, S., Shekhovtsov, O.: Fast decoding algorithm for first order Reed-Muller codes. Problemy Peredachi Informatsii,19(2), 3–7 (1983)Google Scholar
  17. 17.
    MacWilliams, F. J., Sloane, N. J. A.: The theory of error-correcting codes, Amsterdam, The Netherlands: North-Holland 1977Google Scholar
  18. 18.
    Manley, H. J., Mattson, H. F., Schatz, J. R.: Some applications of Good's theorem, IEEE Trans. Inform. TheoryIT-26, 475–476 (1980)Google Scholar
  19. 19.
    Trakhtman, A., Trakhtman, V.: Basics of a theory of digital signals on finite intervals. Moscow, Sovetskoe Radio, 1975 (In Russian)Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Alexey E. Ashikhmin
    • 1
  • Simon N. Litsyn
    • 2
  1. 1.Institute for Problems of Information TransmissionMoscowRussia
  2. 2.Department of Electrical Engineering -SystemsTel-Aviv UniversityRamat AvivIsrael

Personalised recommendations