Probability Theory and Related Fields

, Volume 93, Issue 1, pp 77–89 | Cite as

White noise driven quasilinear SPDEs with reflection

  • D. Nualart
  • E. Pardoux
Article

Summary

We study reflected solutions of the heat equation on the spatial interval [0, 1] with Dirichlet boundary conditions, driven by an additive space-time white noise. Roughly speaking, at any point (x, t) where the solutionu(x, t) is strictly positive it obeys the equation, and at a point (x, t) whereu(x, t) is zero we add a force in order to prevent it from becoming negative. This can be viewed as an extension both of one-dimensional SDEs reflected at 0, and of deterministic variational inequalities. An existence and uniqueness result is proved, which relies heavily on new results for a deterministic variational inequality.

Mathematics Subject Classification

60H15 35H60 35R45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bensoussan, A., Lions, J.L.: Applications des inéquations variationnelles en contrôle stochastique. Paris: Dunod 1978; English translation. Amsterdam: North-Holland 1982Google Scholar
  2. 2.
    Buckdahn, R., Pardoux, E.: Monotonicity methods for white noise driven SPDEs. In: Pinsky, M. (ed.) Diffusion processes and related problems in Analysis, vol. I, pp. 219–233. Boston Basel Stuttgart: Birkhäuser 1990Google Scholar
  3. 3.
    Haussmann, U.G., Pardoux, E.: Stochastic variational inequalities of parabolic type. Appl. Math. Optimization20, 163–192 (1989)Google Scholar
  4. 4.
    Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod 1969Google Scholar
  5. 5.
    Manthey, R.: On the Cauchy problem for reaction diffusion equations with white noise. Math. Nachr.136, 209–228 (1988)Google Scholar
  6. 6.
    Mignot, F., Puel, J.P.: Inéquations d'évolution paraboliques avec convexe dépendant du temps. Applications aux inéquations quasivariationnelles d'évolution. Arch. Ration. Mech. Anal.64, 59–91 (1977).Google Scholar
  7. 7.
    Walsh, J.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.), Ecole d'été de Probabilité de St Flour. (Lect. Notes Math., vol. 1180) Berlin Heidelberg New York: Springer 1986Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • D. Nualart
    • 1
  • E. Pardoux
    • 2
  1. 1.Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain
  2. 2.Mathématiques, URA 225Université de ProvenceMarseille Cedex 3France

Personalised recommendations