Probability Theory and Related Fields

, Volume 93, Issue 2, pp 169–196

Dirichlet forms on fractals: Poincaré constant and resistance

  • Shigeo Kusuoka
  • Zhou Xian Yin
Article

Summary

We study Dirichlet forms associated with random walks on fractal-like finite grahs. We consider related Poincaré constants and resistance, and study their asymptotic behaviour. We construct a Markov semi-group on fractals as a subsequence of random walks, and study its properties. Finally we construct self-similar diffusion processes on fractals which have a certain recurrence property and plenty of symmetries.

Mathematics Subject Classification

60 J 60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barlow, M.T., Bass, R.F.: Construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré25, 225–257 (1989)Google Scholar
  2. 2.
    Barlow, M.T., Bass, R.F.: On the resistence of the Sierpinski carpet. Proc. R. Soc. Lond., Ser. A431, 345–360 (1990)Google Scholar
  3. 3.
    Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré23, 245–287 (1987)Google Scholar
  4. 4.
    Kusuoka, S.: Lecture on diffusion processes on nested fractals. (Lect. Notes Math.) Berlin Heidelberg New York: Springer (to appear)Google Scholar
  5. 5.
    Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc.420, 1–128 (1990)Google Scholar
  6. 6.
    Moser, J.: On Harnack's theorem for elliptic differential equations. Commun. Pure Appl. Math.14, 577–591 (1961)Google Scholar
  7. 7.
    Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math.80, 931–954 (1958)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Shigeo Kusuoka
    • 1
  • Zhou Xian Yin
    • 2
  1. 1.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of MathematicsBeijing Normal UniversityBeijingPeople's Republic of China

Personalised recommendations