Advertisement

Probability Theory and Related Fields

, Volume 97, Issue 3, pp 339–361 | Cite as

Large deviations for a reaction diffusion model

  • G. Jona-Lasinio
  • C. Landim
  • M. E. Vares
Article

Summary

We obtain large deviation estimates for the empirical measure of a class of interacting particle systems. These consist of a superposition of Glauber and Kawasaki dynamics and are described, in the hydrodynamic limit, by a reaction diffusion equation. We extend results of Kipnis, Olla and Varadhan for the symmetric exclusion process, and provide an approximation scheme for the rate functional. Some physical implications of our results are briefly indicated.

Mathematics Subject Classification

60K35 82A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DFL] De, Masi A., Ferrari, P., Lebowitz, J.: Reaction diffusion equations for interacting particle systems. J. Stat. Phys.55, 523–578 (1986)Google Scholar
  2. [DPS] De, Masi A., Presutti, E., Scacciatelli, E.: The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré25, 1–38 (1989)Google Scholar
  3. [DS] Deuschel, J.D., Stroock, D.W.: Large deviations. New York: Academic Press 1989Google Scholar
  4. [DV1] Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time I. Commun. Pure Appl. Math.28, 1–49 (1975)Google Scholar
  5. [DV2] Donsker, M.D., Varadhan S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time II. Commun. Pure Appl. Math.28, 279–303 (1975)Google Scholar
  6. [DV3] Donsker, M.D., Varadhan S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time III. Commun. Pure Appl. Math.29, 389–463 (1976)Google Scholar
  7. [GPV] Guo, M.Z., Papanicolau, G.C., Varadhan, S.R.S.: Non linear diffusion limit for a system with nearest neighbour interactions. Commun. Math. Phys.118, 31–59 (1988)Google Scholar
  8. [J] Jona-Lasinio G.: Stochastic reaction diffusion equations and interacting particle systems. Ann. Inst. H. Poincaré, Phys. Théorique55, 751–758 (1991)Google Scholar
  9. [KOV] Kipnis, C., Olla, S., Varadhan, S.R.S.: Hydrodynamics and large deviations for simple exclusion processes. Commun. Pure Appl. Math.42, 115–137 (1989)Google Scholar
  10. [L1] Landim, C.: Occupation time large deviations of the symmetric simple exclusion process. Ann. Probab.20, 206–231 (1992)Google Scholar
  11. [L2] Landim, C.: An overview on large deviations for the empirical measure of interacting particle systems. Ann. Inst. H. Poincaré, Phys. Théorique55, 615–635 (1991)Google Scholar
  12. [O] Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrscheinlichkeitstheor. Verw. Geb.69, 279–322 (1985)Google Scholar
  13. [On] Onsager, L.: Reciprocal relations in irreversible processes I and II. Phys. Rev.37, 405 (1991); Phys. Rev.38, 2265 (1991)Google Scholar
  14. [OM] Onsager, L., Machlup, S.: Fluctuations and irreversible processes I and II. Phys. Rev.91, 1505 (1953);91, 1512 (1953)Google Scholar
  15. [V] Varadhan, S.R.S.: Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 46 Philadelphia: SIAM 1984Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. Jona-Lasinio
    • 1
  • C. Landim
    • 2
  • M. E. Vares
    • 3
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Faculté de SciencesLAMS de l'Université de RouenMont-Saint-Aignan CedexFrance
  3. 3.IMPARio de JaneiroBrazil

Personalised recommendations