Archiv der Mathematik

, Volume 44, Issue 6, pp 522–529

On Galois coverings of tame algebras

  • Piotr Dowbor
  • Andrzej Skowroński
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. M. Bondarenko andJu. A. Drozd, The representation type of finite groups. Zap. Naučn. Sem. LOMI71, 24–41 (1977).Google Scholar
  2. [2]
    K. Bongartz andP. Gabriel, Covering spaces in representation theory. Invent. Math.65, 331–378 (1982).Google Scholar
  3. [3]
    O. Bretscher andP. Gabriel, The standard form of a representation-finite algebra. Bull. Soc. Math. France111, 21–40 (1983).Google Scholar
  4. [4]
    O. Bretscher, Ch. LÄser andCh. Riedtmann, Selfinjective and simply connected algebras. Manuscripta Math.36, 253–307 (1981).Google Scholar
  5. [5]
    P.Dowbor and A.Skowroński, On the representation type of locally bounded categories. Preprint.Google Scholar
  6. [6]
    Ju. A.Drozd, On tame and wild matrix problems. In: Matrix problems, 104–114, Kiev 1977.Google Scholar
  7. [7]
    Ju. A.Drozd, Tame and wild matrix problems. In: Representations and quadratic forms, 39–74, Kiev 1979.Google Scholar
  8. [8]
    P. Gabriel andCh. Riedtmann, Group representations without groups. Comment. Math. Helv.54, 240–287 (1979).Google Scholar
  9. [9]
    P. Gabriel, The universal cover of a representation-finite algebra. In: Representations of Algebras. LNM903, 68–105, Berlin-Heidelberg-New York 1981.Google Scholar
  10. [10]
    E. L. Green, Group-graded algebras and the zero relation problem. In: Representations of Algebras. LNM903, 106–115, Berlin-Heidelberg-New York 1981.Google Scholar
  11. [11]
    D. Hughes andJ. Waschbüsch, Trivial extensions of tilted algebras. Proc. London Math. Soc.46, 347–364 (1983).Google Scholar
  12. [12]
    M. M. Kleiner, On exact representations of partially ordered sets of finite type. Zap. Naučn. Sem. LOMI28, 42–60 (1972).Google Scholar
  13. [13]
    S.Mac Lane, Categories for the working mathematician. Berlin-Heidelberg-New York 1971.Google Scholar
  14. [14]
    R. Martinez andJ. A. de la Peña, The universal cover of a quiver with relations. J. Pure Appl. Algebra30, 277–292 (1983).Google Scholar
  15. [15]
    R. Martinez andJ. A. de la Peña, Automorphisms of representation-finite algebras. Invent. Math.72, 359–362 (1983).Google Scholar
  16. [16]
    H. Meltzer andA. Skowroński, Group algebras of finite representation type. Math. Z.182, 129–148 (1983).Google Scholar
  17. [17]
    V. V.Otrashevskaja, On the representations of one-parameter partially ordered sets. In: Matrix Problems, 144–149, Kiev 1977.Google Scholar
  18. [18]
    Ch. Riedtmann, Algebren, Darstellungsköcher, überlagerungen und zurück. Comm. Math. Helv.55, 199–224 (1980).Google Scholar
  19. [19]
    Ch. Riedtmann, Representation-finite selfinjective algebras of typeA n. In: Representation Theory II. LNM832, 449–520, Berlin-Heidelberg-New York 1980.Google Scholar
  20. [20]
    C. Ringel, Tame algebras. In: Representation Theory I. LNM831, 137–287, Berlin-Heidelberg-New York 1980.Google Scholar
  21. [21]
    D. J. S.Robinson, A course in the theory of groups. Graduate Texts80, Berlin-Heidelberg-New York 1982.Google Scholar
  22. [22]
    A. Skowroński, The representation type of group algebras. In: Abelian groups and modules. Udine 1984, CISM287, 517–531, Wien-New York 1984.Google Scholar
  23. [23]
    A. Skowroński andJ. Waschüsch, Representation-finite biserial algebras. J. Reine Angew. Math.345, 172–181 (1983).Google Scholar
  24. [24]
    J. Waschbüsch, Universal coverings of selfinjective algebras. In: Representations of Algebras. LNM903, 331–349, Berlin-Heidelberg-New York 1981.Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • Piotr Dowbor
    • 1
  • Andrzej Skowroński
    • 1
  1. 1.Institute of MathematicsNicholas Copernicus UniversityTorÚnPoland

Personalised recommendations