Advertisement

Archiv der Mathematik

, Volume 44, Issue 1, pp 39–47 | Cite as

Some results on linearly compact rings

  • Dinh Van Huynh
Article

Keywords

Compact Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DinhVan Huynh, A note on artinian rings. Arch. Math.33, 546–553 (1979).Google Scholar
  2. [2]
    DinhVan Huynh, Some conditions for the existence of a right identity in a ring. Ann. Univ. Sci. Budapest. Eölvös. Sect. Math.22, 87–98 (1979/1980).Google Scholar
  3. [3]
    DinhVan Huynh, Über linear kompakte Ringe. Acta Math. Acad. Sci. Hungar.36 (1–2), 1–5 (1980).Google Scholar
  4. [4]
    A.Kertész, Ein Radikalbegriff für Moduln. Colloquia Math. Soc. J. Bolyai, 6. Rings. Modules and Radicals, 1973, 255–257.Google Scholar
  5. [5]
    H. Leptin, Linear kompakte Moduln und Ringe. Math. Z.62, 241–267 (1955).Google Scholar
  6. [6]
    H. Leptin, Linear kompakte Moduln und Ringe II. Math. Z.66, 289–327 (1957).Google Scholar
  7. [7]
    Pham Ngoc Anh, A note on linearly compact rings. To appear.Google Scholar
  8. [8]
    F. Szász, Über artinsche Ringe. Bull. Acad. Polon. Sci,11, 351–354 (1963).Google Scholar
  9. [9]
    A. Widiger, Die Struktur einer Klasse linear kompakter Ringe. Beitr. Algbr. Geometr.3, 138–159 (1974).Google Scholar
  10. [10]
    R. Wiegandt, Über halbeinfache linear kompakte Ringe. Studia Sci. Math. Hungar.1, 31–38 (1966).Google Scholar
  11. [11]
    R. Wiegandt, Über transfinit nilpotente Ringe. Acta Math. Acad. Sci. Hungar.17, 101–114 (1966).Google Scholar
  12. [12]
    D. Zelinsky, Ringe with ideal nuclei. Duke Math. J.18, 431–442 (1951).Google Scholar
  13. [13]
    D. Zelinsky, Linearly compact modules and rings. Amer. J. Math.75, 79–90 (1953).Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • Dinh Van Huynh
    • 1
  1. 1.Institute of MathematicsBô hô HanoiVietnam

Personalised recommendations