Archiv der Mathematik

, Volume 44, Issue 1, pp 26–28 | Cite as

On Springer's representations of Weyl groups containing-1

  • N. Spaltenstein


Weyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. M. Beynon andN. Spaltenstein, Green functions of finite Chevalley groups of TypeE n (n=6, 7, 8). J. Algebra88, 584–614 (1984).Google Scholar
  2. [2]
    W. M.Beynon and N.Spaltenstein, Computation of the Green functions of simple groups of typeE n(n=6, 7, 8). Computer Centre Report23, University of Warwick.Google Scholar
  3. [3]
    W. Borho etR. MacPherson, Représentations des groupes de Weyl et homologie d'intersection pour les variétés nilpotentes. C. R. Acad. Sci. Paris, Sér. I.292, no. 15, 707–710 (1981).Google Scholar
  4. [4]
    T. Shoji, On the Green polynomials of a Chevalley group of typeF 4. Comm. Algebra10, 505–543 (1982).Google Scholar
  5. [5]
    T. Shoji, On the Green polynomials of classical groups. Invent. Math.74, 239–267 (1983).Google Scholar
  6. [6]
    T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math.36, 173–207 (1976).Google Scholar
  7. [7]
    B. Srinivasan, Green polynomials of finite classical groups. Comm. Algebra5, 1241–1258 (1977).Google Scholar

Copyright information

© Birkhäuser Verlag 1985

Authors and Affiliations

  • N. Spaltenstein
    • 1
  1. 1.Mathematisches Institut der Universität BernBern

Personalised recommendations