Integral Equations and Operator Theory

, Volume 13, Issue 2, pp 271–284 | Cite as

Boundedness and spectral invariance for standard pseudodifferential operators on anisotropically weighted LP-Sobolev spaces

  • Elmar Schrohe


It is shown that pseudodifferential operators with symbols in the standard classes Sρ,δm(ℝn) define bounded maps between large classes of weighted LP-Sobolev spaces where the growth of the weight does not have to be isotropic. Moreover, the spectrum is independent of the choice of the space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    Beals, R.: Characterisation of Pseudodifferential Operators and Applications, Duke Math. J. 44, 45–57 (1977), 46, 215 (1979)Google Scholar
  2. [B2]
    Beals, R.: Weighted Distribution Spaces and Pseudodifferential Operators, Journal d'Analyse Math. 39, 131–187 (1981)Google Scholar
  3. [CV1]
    Calderón, A. and Vaillancourt, R.: On the Boundedness of Pseudo-Differential Operators, J. Math. Soc. Japan 23, 374–378 (1971)Google Scholar
  4. [CV2]
    Calderón, A. and Vaillancourt, R.: A Class of Bounded Pseudo-Differential Operators, Proc. Nat. Acad. Sc. USA, 1185–1187 (1972)Google Scholar
  5. [C1]
    Cordes, H.O.: Elliptic Pseudo-Differential Operators — an Abstract Theory, Springer LNM 756, Berlin, Heidelberg, New York 1979Google Scholar
  6. [C2]
    Cordes, H.O.: A Global Parametrix for Pseudo-Differential Operators over ℝn, with Applications, Preprint SFB 72, Bonn 1976Google Scholar
  7. [C3]
    Cordes, H.O.: On Some C*-Algebras and Fréchet*-Algebras of Pseudodifferential Operators, Proc. Symp. Pure Math. 43, 79–104 (1985)Google Scholar
  8. [F]
    Fefferman, C.: LP-Bounds for Pseudodifferential Operators, Isr. J. Math. 14, 413–417 (1973)Google Scholar
  9. [GK]
    Gohberg, I. and Krupnik, N.: Einführung in die Theorie der eindimensionalen Integraloperatoren, Basel: Birkhäuser 1979Google Scholar
  10. [G]
    Gramsch, B.: Relative Inversion in der Störungstheorie von Operatoren und Ψ-Algebren, Math. Ann. 269, 27–71 (1984)Google Scholar
  11. [GUW]
    Gramsch, B., Ueberberg, J., Wagner, K.: Spectral Invariance and Submultiplicativity for Fréchet Algebras with Applications to Algebras of Pseudo-Differential Operators, in preparationGoogle Scholar
  12. [I]
    Illner, R.: A class of LP-bounded Pseudo-Differential Operators, Proc. Amer. Math. Soc. 51, 347–355 (1975)Google Scholar
  13. [J]
    Jörgens, K.: Lineare Integraloperatoren, Stuttgart: Teubner 1970Google Scholar
  14. [K]
    Kumano-go, H.: Pseudo-Differential Operators, Cambridge, Mass. and London: MIT-Press 1981Google Scholar
  15. [LM]
    Lockhart, R. and McOwen, R.: Elliptic Differential Operators on Noncompact Manifolds, Ann. Sc. Norm. Sup. Pisa, ser. IV vol XII, 409–447 (1985)Google Scholar
  16. [S1]
    Schrohe, E.: A Ψ* Algebra of Pseudodifferential Operators on Noncompact Manifolds, Arch. Math. 51, 81–86 (1988)Google Scholar
  17. [S2]
    Schrohe, E.: Complex Powers on Noncompact Manifolds and Manifolds with Singularities, Math. Ann. 281, 393–409 (1988)Google Scholar
  18. [SCH]
    Schulze, B.W.: Topologies and Invertibility in Operator Spaces with Symbolic Structures, to appear in Proc. 9. TMP Karl-Marx-Stadt, Teubner Texte zur MathematikGoogle Scholar
  19. [T]
    Taylor, M.: Pseudodifferential Operators, Princeton, NJ: Princeton University Press 1981Google Scholar
  20. [TR]
    Trèves, F.: Introduction to Pseudodifferential and Fourier Integral Operators, New York and London: Plenum Press 1980Google Scholar
  21. [U]
    Ueberberg, J.: Zur Spektralinvarianz von Algebren von Pseudodifferentialoperatoren in der LP-Theorie, manuscripta math. 61, 459–475 (1988)Google Scholar
  22. [W]
    Widom, H.: Singular Integral Equations in LP, Trans. AMS 97, 131–160 (1960)Google Scholar

Copyright information

© Birkhäuser Verlag 1990

Authors and Affiliations

  • Elmar Schrohe
    • 1
  1. 1.Fachbereich MathematikJohannes Gutenberg-UniversitätMainzWest Germany

Personalised recommendations