Archiv der Mathematik

, Volume 64, Issue 1, pp 11–16

On degenerations of tame and wild algebras

  • Christof Geiss


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Bautista, On algebras of strongly unbounded representation type. Comment. Math. Helv.60, 217–286 (1985).Google Scholar
  2. [2]
    R. Bautista, P. Gabriel, A. V. Roiter andL. Salmerón, Representation-finite algebras and multiplicative bases. Invent. Math.81, 217–285 (1985).Google Scholar
  3. [3]
    K. Bongartz, A criterion for finite representation type. Math. Ann.269, 1–12 (1984).Google Scholar
  4. [4]
    K. Bongartz, Indecomposables are standard. Comment. Math. Helv.60, 400–410 (1985).Google Scholar
  5. [5]
    K.Bongartz, On degenerations and extensions of finite dimensional modules. To appear in Adv. in Math.Google Scholar
  6. [6]
    W. W. Crawley-Boevey, On tame algebras and bocses. Proc. London Math. Soc.56, 451–483 (1988).Google Scholar
  7. [7]
    W. W. Crawley-Boevey, Functorial filtrations III: Semidihedral algebras. J. London Math. Soc.40, 31–39 (1989).Google Scholar
  8. [8]
    P. Dowbor andA. Skowroński, On the representation type of locally bounded categories. Tsukuba J. Math.10, 63–72 (1986).Google Scholar
  9. [9]
    Y. A. Drozd, Tame and wild matrix problems. In: Representation Theory II. LNM832, 242–258, Berlin-Heidelberg-New York 1980.Google Scholar
  10. [10]
    Y. A.Drozd and G. M.Greuel, Tame wild dichotonomy for Cohen Macaulay modules. Preprint Univ. Kaiserslautern.Google Scholar
  11. [11]
    K.Erdmann, Blocks of tame representation type and related algebras. LNM1428, Berlin-Heidelberg-New York 1990.Google Scholar
  12. [12]
    U. Fischbacher, Une novelle preuve d'une thèoréme de Nazarova et Roiter. C.R. Acad. Sci. Paris Sér. I Math.300, 259–262 (1985).Google Scholar
  13. [13]
    P. Gabriel, Finite representation type is open. In: Representations of Algebras. LNM488, 132–155, Berlin-Heidelberg-New York 1975.Google Scholar
  14. [14]
    C.Geiss, Tame distributive algebras and related topics. Dissertation, Universität Bayreuth 1993.Google Scholar
  15. [15]
    C. Geiss andJ. A. de la Peña, An interesting family of algebras. Arch. Math.60, 25–35 (1993).Google Scholar
  16. [16]
    H.Kraft, Geometrische Methoden in der Invariantentheorie. Braunschweig 1985.Google Scholar
  17. [17]
    J. A. de la Peña, On the dimension of module varieties of tame and wild algebras. Comm. Algebra19, 1795–1805 (1991).Google Scholar
  18. [18]
    J. A. de la Peña, Functors preserving tameness. Fund. Math.137, 177–185 (1991).Google Scholar
  19. [19]
    C. M. Ringel, The representation type of local algebras. In: Representations of Algebras. LNM488, 282–305, Berlin-Heidelberg-New York 1975.Google Scholar
  20. [20]
    C. M. Ringel, Tame algebras. In: Representation theory I. LNM831, 134–287, Berlin-Heidelberg-New York 1980.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Christof Geiss
    • 1
  1. 1.Mathematisches InstitutUniversität BayreuthBayreuth

Personalised recommendations