Advertisement

Composition of plant cell walls

  • Antonia Heredia
  • Ana Jiménez
  • Rafael Guillén
Review

Abstract

The present study reviews the most recent research published (starting approximately in the 1980s) on the composition of plant cell walls, with a description of the polysaccharides contained in the microfibrillar and amorphous phases: cellulose, hemicellulose and pectic substances, as well as the other components: lignin, proteins and enzymes. Cellulose is a linear homopolymer made up of microfibrils that form a para-crystalline structure stabilised by hydrogen bridges. The hemicelluloses constitute an important group of polysaccharides, which are inter-linked and also linked to microfibrils of cellulose and/or pectins, the most important being: xylans, arabinoxylans, mannans, galactomannans, glucomannans, arabinogalactan II, β-l,3-glucan and β-l,3-β-l,4-glucans. The pectic substances are a complex mixture of colloidal polysaccharides that can be extracted from the cell wall with water or chelating agents, the most significant being: rhamnogalacturonan I, rhamnogalacturonan II, arabinan, galactan, arabinogalactan I and D-galacturonan.

Keywords

Enzyme Cellulose Lignin Polysaccharide Hemicellulose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Der Artikel faßt jüngere Forschungsergebnisse (ungefähr ab Beginn der achtziger Jahre) über die Zusammensetzung der Zellwände von Pflanzen zusammen mit einer Beschreibung der in den mikrofibrillären und amorphen Phasen enthaltenen Polysaccharide: Cellulose, Hemicellulosen und Pektinsubstanzen sowie der übrigen Komponenten: Lignin, Proteine und Enzyme. - Cellulose ist ein lineares Homopolymer aus Mikrofasern, deren parakristalline Struktur durch Wasserstoffbrückenbindungen stabilisiert wird. Die Hemicellulosen stellen eine wichtige Gruppe unter den Polysacchariden dar, die untereinander und mit den Cellulose- und/oder Pektin-Mikro-fibrillen verbunden sind. Als wichtigste Scien genannt: Xylane, Arabinoxylane, Mannane, Galactomannane, Glucomannane, Xyloglucane, Glucuronomannane, Arabinoga-lactan II, β-1,3- und β-l,4-Glucane. Die Pektinsubstanzen sind eine komplexe Mischung von kolloidalen Polysacchariden, die der Zellwand mit Wasser oder löslichen organischen Komponenten (chelating agents) entzogen werden können, wobei die bedeutendsten folgende sind: Rhamno-galacturonan I, Rhamnogalacturonan II, Arabinan, Galactan, Arabinogalactan I und D-Galacturonan.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Darvill A, McNeil M, Albersheim P, Delmer DP (1980) In: Tolbert NE (ed) The biochemistry of plants, vol I. Academic, New YorkGoogle Scholar
  2. 2.
    Showalter AM (1993) The Plant Cell 5: 911Google Scholar
  3. 3.
    Albersheim P, Bauer WD, Keestra K, Talmadge KW (1973) In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides. Academic, New YorkGoogle Scholar
  4. 4.
    Talbott LD, Ray PM (19927 Plant Physiol 98: 357Google Scholar
  5. 5.
    Wakabayashy K, Sakurai N, Kuraishi S (1989) Plant Cell Physiol 30: 99Google Scholar
  6. 6.
    Wilson JR (1993) In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. Madison, WiscosinGoogle Scholar
  7. 7.
    Monties B (1980) Les polimeres vegetaux. Gauthier-Villars, ParisGoogle Scholar
  8. 8.
    Jiménez A, Lavabitch JM, Heredia A (1994) J Agric Food Chem 42: 1194Google Scholar
  9. 9.
    Heredia A, Guillén R, Jiménez A, Fernández-Bolanõs J (1993) Rev Esp Cienc Tecnol Aliment 33: 113Google Scholar
  10. 10.
    Harris PJ (1990) In: Alkin ED (ed) Microbial and plant opportunities to improve lignocellulose utilization by rumiants. Elsevier, New YorkGoogle Scholar
  11. 11.
    Brett C, Waldron K (1990) In: Black M, Chapman J (eds) Physiology and biochemistry of plant cell walls. Unwin Hyman, LondonGoogle Scholar
  12. 12.
    Hon DN (1994) Cellulose 1: 1Google Scholar
  13. 13.
    Brillouett JM, Mercier C (1981) J Sci Food Agric 22: 243Google Scholar
  14. 14.
    Düsterhöft EM, Voragen AG (1991) J Sci Food Agric 55: 411Google Scholar
  15. 15.
    Koller A, O'Neil MA, Darvill AG, Albersheim P (1991) Phytochemistry 30: 3903Google Scholar
  16. 16.
    Taiz L (1984) Annu Rev Plant Physiol 35: 585Google Scholar
  17. 17.
    Whistler RL, Richards EL (1970) In: Pigman W, Horton D (eds) The carbohydrates. Chemistry and biochemistry, vol IIA. Academic, New YorkGoogle Scholar
  18. 18.
    Wilkie KC (1985) In: Brett CT, Hillman JR (eds) Biochemistry of plant cell wall. Cambridge University Press, CambridgeGoogle Scholar
  19. 19.
    Bertin C, Rouau X, Thibault JF (1988) J Sci Food Agric 44: 251Google Scholar
  20. 20.
    Stephen AM (1983) In: Aspinall GO (ed) The carbohydrates, vol 2. Academic, New YorkGoogle Scholar
  21. 21.
    Seymour GB, Colquhoun IJ, DuPont MS, Parsley KR, Selvendran RR (1990) Phytochemistry 29: 725Google Scholar
  22. 22.
    Gil-Serrano A, Mateos-Mato MI, Tejero-Mateo MP (1986) Phytochemistry 25: 2653Google Scholar
  23. 23.
    Thomas JR, McNeil M, Darvill AG, Albersheim P (1987) Plant Physiol 83: 659Google Scholar
  24. 24.
    Selvendran RR, King SE (1989) Carbohydr Res 195: 87Google Scholar
  25. 25.
    Hoffmann RA, Homerling JP, Wliegenthart JF (1992) Carbohydr Res 226: 303Google Scholar
  26. 26.
    Hartley RD, Morrison WH, Himmelsbach DS, Borneman WS (1990) Phytochemistry 29: 3705Google Scholar
  27. 27.
    Stoddart RW (1984) The biosynthesis of polysaccharides. Croom Held, SidneyGoogle Scholar
  28. 28.
    Aspinall GO (1970) In: Pigman W, Horton D (eds) The carbohydrates: chemistry and biochemistry, vol IIB. Academic, New YorkGoogle Scholar
  29. 29.
    Bradbury AG, Halliday DJ (1990) J Agric Food Chem 38: 389Google Scholar
  30. 30.
    Manzi AE, Ancibor E, Cerezo AS (1990) Plant Physiol 93: 931Google Scholar
  31. 31.
    Gupta AK, BeMiller JN (1990) Phytochemistry 29: 853Google Scholar
  32. 32.
    Goldberg R, Gillou L, Prat R (1991) Carbohydr Res 210: 263Google Scholar
  33. 33.
    Cartier N, Chambat G, Joseleau JP (1988) Phytochemistry 27: 1361Google Scholar
  34. 34.
    Edelmann HG, Fry SC (1992) Carbohydr Res 228: 423Google Scholar
  35. 35.
    Ryden P, Selvendran RR (1990) Biochem J 269: 393Google Scholar
  36. 36.
    Stevens BJ, Selvendran RR (1980) J Sci Food Agric 31: 1257Google Scholar
  37. 37.
    Hayashi T (1989) Annu Rev Plant Physiol Plant Mol Biol 40: 139Google Scholar
  38. 38.
    Brummell DA, Maclachlam GA (1989) In: Lewis NG, Paice MG (eds) Plant cell wall polymers. Biogenesis and biodegradation. ACS Symposium Series 399, New YorkGoogle Scholar
  39. 39.
    Aspinall GO (1983) In: Aspinall GO (ed) The polysaccharides, vol 2. Academic, New YorkGoogle Scholar
  40. 40.
    Reid JS (1985) In: Brett CT, Hillman JR (eds) Biochemistry of plant cell wall. Cambridge University Press, CambridgeGoogle Scholar
  41. 41.
    Renard CM, Rouau X, Thibault JF (1990) Sci Aliments 10: 283Google Scholar
  42. 42.
    MacGregor AW, Ballance GM, Dushnicky L (1989) Food Microstruct 8: 235Google Scholar
  43. 43.
    Van Buren JP (1979) J Texture Stud 10: 1Google Scholar
  44. 44.
    Ishii T, Thomas, Darvill A, Albersheim P (1989) Plant Physiol 89: 421Google Scholar
  45. 45.
    Carpita NC (1989) Phytochemistry 28: 121Google Scholar
  46. 46.
    Selvendran RR, O'Neill M (1987) In: Glick D (ed) Methods of biochemical analysis. Wiley, CanadaGoogle Scholar
  47. 47.
    Swamy NR, Salimath PV (1991) Phytochemistry 30: 263Google Scholar
  48. 48.
    Siddiqui IR, Emery JP (1990) J Agric Food Chem 38: 387Google Scholar
  49. 49.
    McCann Mc, Wells B, Roberts K (1992) J Microsc (Oxf) 166: 123Google Scholar
  50. 50.
    Vries (1983) Carbohydr Polym 3: 193Google Scholar
  51. 51.
    Kato Y, Nevins DJ (1989) Plant Physiol 89: 792Google Scholar
  52. 52.
    Caelles C, Delseny M, Puigdomenech P (1992) Cell 70: 21Google Scholar
  53. 53.
    Chrispeels MJ, Raikhel NV (1991) Plant Cell 3: 1Google Scholar
  54. 54.
    Bolwell, GP (1988) Phytochemistry 27: 1235Google Scholar
  55. 55.
    Didierjean L, Frendo P, Burkard G (1992) Plant Mol Biol 18: 847Google Scholar
  56. 56.
    Kleis-San Francisco SM, Tierney ML (1990) Plant Physiol 94: 1897Google Scholar
  57. 57.
    Robinson DG, Andreae M, Sauer A (1985) In: Brett CT, Hillman R (eds) Biochemistry of plant cell wall. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Ye ZH, Song YR, Marcus A, Varner JE (1991) Plant J 1: 175Google Scholar
  59. 59.
    Fong C, Kieliszewski MJ, Zacks R, Leykam FJ, Lamport DT (1992) Plant Physiol 99: 548Google Scholar
  60. 60.
    Cassab GI, Varner JE (1988) Annu Rev Plant Physiol Plant Mol Biol 39: 321Google Scholar
  61. 61.
    Engels FM, Schuurmans JL (1992) J Sci Food Agric 59: 45Google Scholar
  62. 62.
    Jung HJ, Valdez FR, Hatfield RD (1992) J Sci Food Agric 58: 347Google Scholar
  63. 63.
    Wilson WD, Jarvis MC, Duncan HJ (1989) J Sci Food Agric 48: 9Google Scholar
  64. 64.
    Iiyama K, Lam TB, Stone BA (1990) Phytochemistry 29: 733Google Scholar
  65. 65.
    Nahar N, Mosihuzzaman M, Theander O (1990) J Sci Food Agric 50: 45Google Scholar
  66. 66.
    Eraso F, Hartley RD (1990) J Sci Food Agric 51: 163Google Scholar
  67. 67.
    Selvendran RR (1984) Am J Clin Nutr 39: 320Google Scholar
  68. 68.
    Fry SC (1986) Annu Rev Plant Physiol 5: 169Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Antonia Heredia
    • 1
  • Ana Jiménez
    • 1
  • Rafael Guillén
    • 1
  1. 1.Departamento de Biotecnología de Alimentas, Instituto de la GrasaConsejo Superior de Investigaciones CientíficasSevillaSpain

Personalised recommendations