Integral Equations and Operator Theory

, Volume 37, Issue 4, pp 423–436 | Cite as

A note on the existence, uniqueness and symmetry of par-balanced realizations

  • Aurelian Gheondea
  • Raimund J. Ober
Article

Abstract

We give a proof of the realization theorem of N.J. Young which states that analytic functions which are symbols of bounded Hankel operators admit par-balanced realizations. The main tool used in this proof is the induced Hilbert spaces and a lifting lemma of Kreîn-Reid-Lax-Dieudonné. Alternatively one can use the Loewner inequality. A short proof of the uniqueness of par-balanced realizations is included. As an application, it is proved that par-balanced realizations of real symmetric transfer functions areJ-self-adjoint.

Mathematics Subject Classification

93B15 93B28 47B35 47B50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Aronszajn: Theory of reproducing kernels,Trans. Amer. Math. Soc.,68 (1950), 337–404.Google Scholar
  2. [2]
    L. de Branges:Hilbert Spaces of Entire Analytic Functions. Prentice-Hall, Englewood Cliffs, N.J. 1968.Google Scholar
  3. [3]
    L. de Branges, J. Rovnyak: Canonical models in quantum mechanics, inPerturbation Theory and its Applications in Quantum Mechanics, Proc. Adv. Sem. Math. Res. Center, Madison WS 1965, pp. 295–392.Google Scholar
  4. [4]
    T. Constantinescu, A. Gheondea. Elementary rotations of operators in Kreîn spaces,J. Operator Theory,29 (1993), 167–203.Google Scholar
  5. [5]
    T. Constantinescu, A. Gheondea: Representations of Hermitian Kernels by means of Kreîn spaces, preprint no. 15, Institutul de Matematică al Academiei Române, Bucureşti 1996.Google Scholar
  6. [6]
    J. Dieudonné: Quasi-hermitian operators, inProceedings of International Symposium on Linear Spaces, Jerusalem 1961, pp. 115–122.Google Scholar
  7. [7]
    A. Dijksma, H. Langer, H. de Snoo: Unitary colligations in Kreîn spaces and their role in extension theory of isometric and symmetric linear relations in Hilbert spaces, inFunctional Analysis II, Lecture Notes in Mathematics, no1242 Springer Verlag, Berlin-Heidelberg-New York 1987, pp. 123–143.Google Scholar
  8. [8]
    M.A. Dritschel: A method for constructing invariant subspaces for some operators on Kreîn spaces, inOperator Theory: Advances and Applications, Vol. 61, Birkhäuser Verlag, Basel 1993.Google Scholar
  9. [9]
    P.A. Fillmore, J.P. Williams: On operator ranges,Adv. in Math. 7 (1971), 254–281.Google Scholar
  10. [10]
    P.A. Fuhrmann:Linear Systems and Operators in Hilbert Space, McGraw-Hill, 1981.Google Scholar
  11. [11]
    A. Gheondea, R.J. Ober: CompletelyJ-positive linear systems of finite order,Math. Nachr.,203 (1999), 75–101.Google Scholar
  12. [12]
    K. Glover, R.F. Curtain, J.R. Partington: Realisation and approximation of linear infinite dimensional systems with error bounds,SIAM J. Control and Optimization,26 (1988), 863–898.Google Scholar
  13. [13]
    M.G. Kreîn: On linear completely continuous operators in functional spaces with two norms, (Ukrainian),Zbirnik Prac. Inst. Mat. Akad. Nauk USSR,9 (1947), 104–129.Google Scholar
  14. [14]
    P.D. Lax: Symmetrizable linear transformations,Comm. Pure Appl. Math. 7 (1954). 633–647.Google Scholar
  15. [15]
    A.V. Megretskii, V.V. Peller, S.R. Treil: The inverse spectral problem for self-adjoint Hankel operators,Acta Mathematica,174 (1995), 241–309.Google Scholar
  16. [16]
    B.C. Moore: Principal component analysis in linear systems: controllability, observability and model reduction,IEEE Transactions on Automatic Control,26 (1981), 17–32.Google Scholar
  17. [17]
    R.J. Ober, S. Montgomery-Smith: Bilinear transformation of infinitedimensional state-space systems and balanced realizations of nonrational transfer functions,SIAM Journal on Control and Optimization,28 (1990), 438–465.Google Scholar
  18. [18]
    W.T. Reid: Symmetrizable completely continuous linear transformations in Hilbert space,Duke Math. J. 18 (1951), 41–56.Google Scholar
  19. [19]
    L. Schwartz: Sous espaces Hilbertiens d'espaces vectoriel topologiques et noyaux associés (noyaux reproduisants).J. d'Analyse Math. 13 (1964), 115–256.Google Scholar
  20. [20]
    J. Weidmann:Linear Operators in Hilbert space, Springer Verlag, Berlin-Heidelberg-New-York 1980.Google Scholar
  21. [21]
    N.J. Young: Balanced realizations in infinite dimensions, inOperator Theory: Advances and Applications, Vol.19, Birkhäuser Verlag, Basel, 1986 pp. 449–471.Google Scholar
  22. [22]
    N.J. Young: Private communication.Google Scholar

Copyright information

© Birkhäuser Verlag 2000

Authors and Affiliations

  • Aurelian Gheondea
    • 1
  • Raimund J. Ober
    • 2
  1. 1.Institutul de Matematică al Academiei RomâneBucureştiRomănia
  2. 2.Center for Engineering Mathematics EC35University of Texas at DallasRichardsonUSA

Personalised recommendations