Journal of Mathematical Chemistry

, Volume 6, Issue 1, pp 17–40

Detecting strictly detailed balanced subnetworks in open chemical reaction networks

  • Stefan Schuster
  • Ronny Schuster
Papers

Abstract

The notion “strictly detailed balanced subnetwork” is introduced, for chemical reaction networks which are open and spatially homogeneous, to refer to any set of reactions the net rates of which vanish in each asymptotically stable steady state, regardless of the kinetic parameters of any reaction in the whole network. Necessary and sufficient conditions for sets of reactions to be strictly detailed balanced subnetworks are derived. An algorithm for detecting all reactions belonging to such subnetworks in systems of arbitrary stoichiometry is given, justified and applied to a realistic biochemical system. A computer program in PASCAL, performing the essential parts of this algorithm, is added.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Wegscheider, Z. Phys. Chemie (Leipzig) 39 (1902)257,Google Scholar
  2. [2]
    G.N. Lewis, Proc. Natl. Acad. Sci. 11 (1925)179.Google Scholar
  3. [3]
    J.Z. Heaton, Bull. Math. Biophys. 15 (1953)121.Google Scholar
  4. [4]
    J. Higgins, Ind. Eng. Chem. 59 (1967)18.Google Scholar
  5. [5]
    S. Schuster and R. Schuster, J. Math. Chem. 3 (1989)25.Google Scholar
  6. [6]
    F. Horn and R. Jackson, Arch. Rational Mech. Anal. 47 (1972)81.Google Scholar
  7. [7]
    A.I. Volpert and S.I. Khudyayev,Analysis over Classes of Discontinuous Functions and the Equations of Mathematical Physics (Nauka, Moscow, 1975), in Russian.Google Scholar
  8. [8]
    M. Schauer and R. Heinrich, Math. Biosci. 65 (1983)155.Google Scholar
  9. [9]
    J.D. Rawn,Biochemistry (Harper and Row, New York, 1983).Google Scholar
  10. [10]
    H.G. Hers and L. Hue, Ann. Rev. Biochem. 52 (1983)617.PubMedGoogle Scholar
  11. [11]
    B.L. Clarke, in:Advances in Chemical Physics, Vol. 43, ed. I. Prigogine and S.A. Rice (Wiley, New York, 1980), p. 1.Google Scholar
  12. [12]
    R. Schuster, H.G. Holzhütter and G. Jacobasch, BioSystems 22 (1988)19.PubMedGoogle Scholar
  13. [13]
    P.L. Corio, J. Phys. Chem. 88 (1984)1825.Google Scholar
  14. [14]
    C. Reder, J. Theor. Biol. 135 (1988)175.PubMedGoogle Scholar
  15. [15]
    H. Kacser and J.A. Bums, Symp. Soc. Exp. Biol. 27 (1973)65.PubMedGoogle Scholar
  16. [16]
    R. Heinrich and T.A. Rapoport, Eur. J. Biochem. 42 (1974)89.PubMedGoogle Scholar
  17. [17]
    C.W. Groetsch and J.T. King,Matrix Methods and Applications (Prentice-Hall, Englewood Cliffs, 1988).Google Scholar
  18. [18]
    R.A. Beaumont and R.W. Ball,Introduction to Modern Algebra and Matrix Theory (Constable, London, 1954).Google Scholar
  19. [19]
    J.R. Magnus and H. Neudecker,Matrix Differential Calculus Wiley, Chichester, 1988).Google Scholar
  20. [20]
    R. Zurmühl,Matrizen und ihre technischen Anwendungen (Springer, Berlin, 1964).Google Scholar
  21. [21]
    M. Feinberg, Arch. Rational Mech. Anal. 49 (1972)187.Google Scholar
  22. [22]
    F. Horn, Proc. Roy. Soc. London Ser. A 334(1973)299; 313; 331.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1991

Authors and Affiliations

  • Stefan Schuster
    • 1
  • Ronny Schuster
    • 2
  1. 1.Sektion Biologie, Bereich BiophysikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Institut für Biochemie, Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations