Journal of Mathematical Chemistry

, Volume 6, Issue 1, pp 1–15 | Cite as

Chirality: A superselection rule generated by the molecular environment?

  • Anton Amann


The superposition of left- and right-handed forms of a chiral molecule does not exist or is at least very unstable. Frequently, this instability is traced back to the coupling of the molecule to its environment, e.g. the radiation field or collisions with neighbor molecules. The situation is not completely clear, neither theoretically nor experimentally. Here, the theoretical aspects and consequences of the coupling (molecule ↔ environment) are discussed.


Radiation Physical Chemistry Radiation Field Theoretical Aspect Chiral Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Borel,Introduction Géométrique à Quelques Théories Physiques (Gautheir-Villars, Paris, 1914).Google Scholar
  2. [2]
    G.W. Ford, J.T. Lewis and R.F. O'Connell. Phys. Rev. A37 (1988)4419.Google Scholar
  3. [3]
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys. 59 1987)1.Google Scholar
  4. [4]
    P.d. Smedt, D. Dürr, J.L. Lebowitz and C. Liverani, Commun. Math. Phys. 120 (1988)195.Google Scholar
  5. [5]
    A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47 (1935)777.Google Scholar
  6. [6]
    E. Schrödinger, Proc. Cambridge Phil. Soc. 31 (1935)555.Google Scholar
  7. [7]
    E. Schröedinger, Naturwissenschaften 23 (1935)807.Google Scholar
  8. [8]
    E. Schröedinger, Proc. Cambridge Phil. Soc. 32 (1936)446.Google Scholar
  9. [9]
    J.F. Clauser and A. Shimony, Rep. Prog. Phys. 41 (1978)1881.Google Scholar
  10. [10]
    A. Aspect, G. Grangier and G. Roger, Phys. Rev. Lett. 49 (1982)1804.Google Scholar
  11. [11]
    G.W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6 (1965)504.Google Scholar
  12. [12]
    H. Primas, Induced nonlinear time evolution of open quantum objects, in:Proc. NATO ASI “Sixty two Years of Uncertainty: Historical, Philosophical, Physics Inquiries into the Foundations of Quantum Physics”, Erice, Italy (1989), ed. A.I. Miller (Plenum, New York, 1990).Google Scholar
  13. [13]
    P. Funck, Die Landau-Lifschitz-Gleichung als nichtlineare Schröd ingerg leic hung, Diplomarbeit ETH-Zürich (1989), unpublished.Google Scholar
  14. [14]
    R.A. Harris and L. Stodolsky, J. Chem. Phys. 74 (1981)2145.Google Scholar
  15. [15]
    R.A. Harris and R. Silbey, J. Chem. Phys. 78 (1983)7330.Google Scholar
  16. [16]
    P. Claverie and G. Jona-Lasinio, Phys. Rev. A33 (1986)2245.Google Scholar
  17. [17]
    R. Meyer and R.R. Ernst, J. Chem. Phys. 86 (1987)784.Google Scholar
  18. [18]
    P. Nielaba, J.L. Lebowitz, H. Spohn and J.L. Vallés, J. Stat. Phys. 55 (1989)745.Google Scholar
  19. [19]
    M. Quack, Angew. Chem. Int. Ed. Engl. 28 (1989)571.Google Scholar
  20. [20]
    R. Silbey and R.A. Harris, J. Phys. Chem. 93 (1989)7062.Google Scholar
  21. [21]
    J. Von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).Google Scholar
  22. [22]
    J.M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1968).Google Scholar
  23. [23]
    U. Müller-Herold, J. Chem. Ed. 62 (1985)379.Google Scholar
  24. [24]
    H. Primas,Chemistry, Quantum Mechanics, and Reductionism. Perspectives in Theoretical Chemistry (Springer, Berlin, 1983).Google Scholar
  25. [25]
    H. Primas, Mathematical and philosophical questions in the theory of open and macroscopic quantum systems,Proc. NATO ASI “Sixty-two Years of Uncertainly: Historical, Philosophical, Physics Inquiries into the Foundations of Quantum Physics”, Erice, Italy (1989), ed. A.I. Miller (Plenum, New York, 1990).Google Scholar
  26. [26]
    A. Einstein, Elementare Überlegungen zur Interpretation der Quantenmechanik, in:Scientific Papers, presented to Max Born (Oliver Boyd, Edinburgh, 1953).Google Scholar
  27. [27]
    M. Born,Albert Einstein, Hedwig und Max Born, Briefwechsel 1916–1955 (Nymphenburger Verlagshandlung, München, 1969).Google Scholar
  28. [28]
    P. Pfeifer, Chiral molecules — a superselection rule induced by the radiation field, Thesis, ETH-Zürich No. 6551 (ok Gotthard S+D AG, Zurich, 1980).Google Scholar
  29. [29]
    S.G. Kukolich, J.H.S. Wang and D.E. Oates, Chem. Phys. Lett. 20 (1973)519.Google Scholar
  30. [30]
    F. Hund, Z. Phys. 43 (1927)805.Google Scholar
  31. [31]
    A.S. Wightman and N. Glance, Nucl. Phys. B (Proc. Suppl.) 6 (1989)202.Google Scholar
  32. [32]
    M. Quack, Chem. Phys. Lett. 132 (1986)147.Google Scholar
  33. [33]
    A. Amann, Molecules coupled to their environment, in:Large-Scale Molecular Systems: Quantum and Stochastic Aspects, ed. W. Gans, A. Blumen and A. Amann (Plenum, London, 1991), to be published.Google Scholar
  34. [34]
    E.A. Power,Introductory Quantum Electrodynamics (Longmans, Green and Co., London, 1964).Google Scholar
  35. [35]
    W.P. Healy,Non-Relativistic Quantum Electrodynamics (Academic Press, London, 1982).Google Scholar
  36. [36]
    D.P. Craig and T. Thirunamachandran,Molecular Quantum Electrodynamics. An Introduction to Radiation-Molecule Interactions (Academic Press, London, 1984).Google Scholar
  37. [37]
    C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg,Photons and Atoms (Wiley, New York, 1989).Google Scholar
  38. [38]
    R. Görlich, M. Sassetti and U. Weiss, Europhys. Lett. 10 (1989)507.Google Scholar
  39. [39]
    M. Reed and B. Simon,Methods of Modern Mathematical Physics. Vol. I: Functional Analysis (Academic Press, New York, 1972).Google Scholar
  40. [40]
    A. Amann, Ground states of a spin-boson model, Preprint (1990).Google Scholar
  41. [41]
    H. Spohn, Commun, Math. Phys. 123 (1989)277.Google Scholar
  42. [42]
    H. Spohn and R. Dümcke, J. Stat. Phys. 41 (1985)389.Google Scholar
  43. [43]
    A. Amann, Perturbation theory of boson dynamical systems, J. Phys. A23 (1990)L783.Google Scholar
  44. [44]
    A. Amann, C*-systems without norm-continuity properties, in:Proc. Conf. on Current Topics in Operator Algebras, Nara, Japan (1990), ed. Y. Nakagami (World Scientific, Singapore, 1991), to be published.Google Scholar
  45. [45]
    R.G. Woolley, J. Phys. A13 (1980)2795.Google Scholar
  46. [46]
    R.G. Woolley, Natural optical activity and the molecular hypothesis, in:Structures versus Special Properties (Springer, Berlin- Heidelberg, 1982).Google Scholar
  47. [47]
    H. Spohn, R. Stückl and W. Wreszinski, Preprint (1990).Google Scholar
  48. [48]
    A. Amann, Chirality as a classical observable in algebraic quantum mechanics, in:Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics, ed. A. Amann, L. Cederbaunt and W. Gans (Kluwer, Dordrecht, 1988).Google Scholar
  49. [49]
    B. Bleancy and J.H.N. Loubser, Nature 161 (1948)522.Google Scholar
  50. [50]
    P.W. Anderson, Phys. Rev. 75 (1949)1450.Google Scholar
  51. [51]
    H. Margenau, Phys. Rev. 76 (1949)1423.Google Scholar
  52. [52]
    H. Primas, The measurement process in the individual interpretation of quantum mechanics, in:Quantum Theory without Reduction, ed. M. Cini and J.-M. Lévy-Leblond (IOP Publ., Bristol, 1990).Google Scholar
  53. [53]
    G. Jona-Lasinio, F. Martinelli and E. Scoppola, Commun. Math. Phys. 80 (1981)223.Google Scholar
  54. [54]
    S. Graffi, V. Brecchi and G. Jona-Lasinio, J. Phys. A17 (1984)2935.Google Scholar
  55. [55]
    B. Simon, J. Functional Anal. 63 (1985)123.Google Scholar
  56. [56]
    G. Jona-Lasinio and P. Claverie, Progr. Theor. Phys. Suppl. 86 (1986)54.Google Scholar
  57. [57]
    R.A. Harris and L. Stodolsky, Phys. Lett. B78 (1978)313.Google Scholar
  58. [58]
    L.D. Barron, Chem. Soc. Rev. 15 (1986)189.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1991

Authors and Affiliations

  • Anton Amann
    • 1
  1. 1.Laboratory of Physical ChemistryETH-ZentrumZürichSwitzerland

Personalised recommendations