Advertisement

Theoretica chimica acta

, Volume 72, Issue 5–6, pp 347–361 | Cite as

A generalized restricted open-shell Fock operator

  • W. Daniel Edwards
  • Michael C. Zerner
Methodology

Abstract

We reexamine the open shell restricted Hartree-Fock theory and develop Fock-like operators that are quite general and easy to implement on a computer. We present a table of ‘vector coupling coefficients’ that define this operator for most of the cases that commonly arise. We compare the form of this operator with that suggested by others, and discuss the orbitals obtained by this procedure with respect to the generalised Brillouin's theorem, and the orbital energies with respect to Koopmans' approximation.

Key words

Open-shell Hartree-Fock Restricted Hartree-Fock Openshell molecular orbital theory Generalized Hartree-Fock theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    Roothaan CCJ (1952) Rev Mod Phys 22:571Google Scholar
  2. 2.
    Hall GG 1(51) Proc R Soc London A 205:541Google Scholar
  3. 3.
    Pople JA, Nesbet RK (1954) J Chem Phys 22:571Google Scholar
  4. 4.
    The popular Gaussian series of programs by Pople JA and his co-workers is, for example, based on the UHF theory for open-shell SCF for Møller-Plesset Perturbation Theory. Binkley JS, Frisch MJ, DeFrees DJ, Raghavachari K, Whitesides HB, Schlegel HB, Fluder EM, Pople JA, Department of Chemistry, Carnegie Mellon University, Pittsburgh, PaGoogle Scholar
  5. 5. a)
    Löwdin PO (1959) Adv Chem Phys 2:207Google Scholar
  6. 5. b)
    Löwdin PO (1966) Quantum theory of atoms, molecules and the solid state. Academic Press, New York LondonGoogle Scholar
  7. 6.
    Kengsfield III, BH, Schug JC (1978) Mol Phys 35:1113Google Scholar
  8. 7.
    Amos T, Snyder LC (1964) J Chem Phys 41:1773Google Scholar
  9. 8.
    Amos AT, Hall GG (1961) Proc R Soc London A 263:483Google Scholar
  10. 9.
    Bacon AD, Zerner MC (1979) Theor Chim Acta 53:21Google Scholar
  11. 10.
    Binkley JS, Pople JA (1975) Int J Quantum Chem 9:229Google Scholar
  12. 11.
    Bartlett RJ (1981) Ann Rev Phys Chem 32:359Google Scholar
  13. 12.
    Sosa C, Schlegel HB: Int J Quantum Chem, in pressGoogle Scholar
  14. 13.
    Roothaan CCJ (1960) Rev Mod Phys 32:179Google Scholar
  15. 14.
    see, for example: Pauncz R (1979) Spin eigenfunctions. Plenum Press, New York; or Shavitt I (1977) In: Schaeffer III HF (ed) Methods of electronic structure theory. Plenum Press, New YorkGoogle Scholar
  16. 15.
    Birss FW, Fraga S (1963) J Chem Phys 38:2552Google Scholar
  17. 16. a)
    Huzinaga S (1969) J Chem Phys 60:3215;Google Scholar
  18. 16. b)
    Huzinaga S (1961) Phys Rev 122:131Google Scholar
  19. 17. a)
    Hirao K, Nakatsuji H (1973) J Chem Phys 59:1457Google Scholar
  20. 17. b)
    Hirao K (1974) J Chem Phys 60:3215Google Scholar
  21. 18.
    Silverstone HJ (1977) J Chem Phys 67:4172Google Scholar
  22. 19. a)
    Caballol R, Gallifa R, Riera JM, Carbo R (1974) Int J Quantum Chem 8:373;Google Scholar
  23. 19. b)
    Carbo R, Domingo LL, Gregori J (1980) Int J Quantum Chem 17:725;Google Scholar
  24. 19. c)
    Carbo R, Riera JM (1978) A general SCF theory. Lect Notes Chem, vol 5. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. 20.
    Morikawa T (1980) J Chem Phys 73:1303Google Scholar
  26. 21. a)
    Davidson ER (1973) Chem Phys Lett 21:565;Google Scholar
  27. 21. b)
    Jackels CF, Davidson ER (1974) Int J Quantum Chem 8:707Google Scholar
  28. 22.
    Pople JA, Beveridge DL, Dobosh PA (1967) J Chem Phys 47:2026Google Scholar
  29. 23.
    Ridley JE, Zerner MC (1973) Theor Chim Acta 32:111Google Scholar
  30. 24.
    Edwards WD, Weiner B, Zerner MC (1986) J Am Chem Soc 108:2196Google Scholar
  31. 25.
    Veillard A (1975) In: Diercksen GHF, Sutcliffe BT, Veillard A (eds) Computational techniques in quantum chemistry. NATO Advanced Series C. D. Reidel, BostonGoogle Scholar
  32. 26.
    Levy B, Berthier G (1968) Int J Quantum Chem 2:307Google Scholar
  33. 27.
    Jorgensen P, Simons J (1981) Second quantization-based methods in quantum chemistry. Academic Press, New YorkGoogle Scholar
  34. 28.
    Yaffe LG, Goddard III WA (1976) Phys Rev A 13:1682:see also Bobrowicz FW, Goddard III WA (1977) In: Schaeffer III HF (ed) Methods of electronic structure theory. Plenum Press, New YorkGoogle Scholar
  35. 29.
    Koopmans TA (1933) Physica 1:104Google Scholar
  36. 30.
    a Not unique. Such situations should be followed by configuration interaction treatment within the active orbital manifoldbIn theD 2h subgroups of the octahedron, thed(τ) orbitals belong to different irreducible representations. Similarly in theC 2v subgroup of the tetrahedron, thed(τ) orbitals belong to different irreducible representations. Only if the orbitals are subgroup basis do the above expressions hold.N= total number of electrons;M= number of open shell orbitals;Op= number of open shell operators;n μ = occupation number for shellμ = N/M; ↑ represents anα electron; ↓ represents aβ electron; ↕ represents a doubly occupied orbital. The last eight cases representd orbitals in an octahedral fieldGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • W. Daniel Edwards
    • 1
  • Michael C. Zerner
    • 1
  1. 1.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA

Personalised recommendations