Probability Theory and Related Fields

, Volume 90, Issue 2, pp 175–202

Decroissance exponentielle du noyau de la chaleur sur la diagonale (I)

  • G. Ben Arous
  • R. Léandre
Article

Summary

We give examples based upon large deviation's theory where the heat kernel of a degenerate diffusion has an exponential decay over the diagonal. Using Malliavin calculus, we give conditions for a more generalized heat kernel to have an exponential decay over the diagonal. We give lower bound in some particular case by using the Bismut's condition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Az.1] Azencott, R.: Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynman. Séminaire de Probabilités XVI. (Lect. Notes Math., vol. 921) Berlin Heidelberg New York: Springer 1980/81Google Scholar
  2. [Az.2] Azencott, R.: Grandes déviations et applications. Cours de probabilité de Saint-Flour. (Lect. Notes Math., vol. 774) Berlin Heidelberg New York: Springer 1978Google Scholar
  3. [BA.4] Ben Arous, G.: Noyau de la chaleur hypoelliptique et géométrique sous-riemannienne. Actes du Colloque Franco-Japonais, Paris. (Lect. Notes Math., vol. 1322) Berlin Heidelberg New York: Springer 1987Google Scholar
  4. [BA.2] Ben Arous, G.: Methodes de Laplace et de la phase stationnaire sur l'espace de Wiener. Stochastics25, 125–153 (1988)Google Scholar
  5. [BA.3] Ben Arous, G.: Developpement asymptotique du noyau de la chaleur hors du cutlocus. Ann. Sci. Ec. Norm. Super., IV, Ser.21, 307–331 (1988)Google Scholar
  6. [BA.1] Ben Arous, G.: Flots et séries de Taylor stochastiques. Probab. Th. Rel. Fields81, 29–77 (1989)Google Scholar
  7. [BA-L.1] Ben Arous, G., Léandre, R.: Influence du drift sur le comportement au point de départ d'un noyau de la chaleur hypoelliptique (II). A paraître à Probab. Th. Rel. FieldsGoogle Scholar
  8. [BA-L.2] Ben Arous, G., Léandre, R.: Formule de Campbell-Hausdorff-Dynkin stochastique. (preprint)Google Scholar
  9. [B.1] Bismut, J.-M.: in Large deviations and the Malliavin calculus. In: Progress in Maths, vol. 45. Boston: Birkhaüser 1984Google Scholar
  10. [B.2] Bismut, J-M.: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander's conditions. Z. Wahrscheinlichkeitstheor. Vew. Geo.56, 469–505 (1981)Google Scholar
  11. [F-V] Freidlin, M.I. Ventcel, A.D.: Random perturbation of dynamical system. Grundlehren der Mathématischen Wissenschaften, vol. 260 Berlin Heidelberg New York: Springer 1984Google Scholar
  12. [J-S.1] Jerison, D., Sanchez-Calle, A.: Subelliptic second order differential operator in complex analysis III. In: Berenstein, E. (Ed.) (Lect. Notes Math., vol. 1227, pp. 46–78) Berlin Heidelberg New York: Springer 1987Google Scholar
  13. [J-S.2] Jerison, D., Sanchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields. Indiana Univ. Math. J.35, 835–854 (1986)Google Scholar
  14. [K-S.1] Kusuoka, S., Stroock, D.W.: Long time estimates for the heat kernel associated with uniformly subelliptic symmetric second order operator. Ann. Math.127, 165–189 (1989)Google Scholar
  15. [K-S.2] Kusuoka, S., Stroock, D.W.: Applications of the Malliavin calculus IIGoogle Scholar
  16. [K-S.3] Kusuoka, S., Stroock, D.W.: Applications of the Malliavin calculus IIIGoogle Scholar
  17. [L.1] Léandre, R.: Applications quantitatives et géométriques du calcul de Malliavin. Version française: Actes du Colloque Franco-Japonais. (Lect. Notes Math., vol. 1322) Berlin Heidelberg New York: Springer Version anglaise: Proceedings du Colloque Geometry of random motion. A.M.S. Contemp. Math.73, 173–196 (1989)Google Scholar
  18. [L.2] Léandre, R.: Minoration en temps petit de la densité d'une diffusion dégénérée. J. Funct. Anal.74, 399–415 (1987)Google Scholar
  19. [L.3] Léandre, R.: Développementasymptotique de la densité d'une diffusion dégénérée. A paraitre dans Forum Mathematicum (1991)Google Scholar
  20. [M] Meyer, P.-A.: Le calcul de Malliavin et un peu de pédagogie. RCP no 25, vol. 34, Université de Strasbourg, 1984Google Scholar
  21. [N-S-W] Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields, I. Basic Properties. Acta Math.155, 103–147 (1985)Google Scholar
  22. [Str] Strichartz, R.: The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal.72, 320–346 (1987)Google Scholar
  23. [T] Takanobu, S.: Diagonal short time asymptotics of heat kernels for certain degenerate operators of Hörmander type. Publ. Res. Inst. Math. Sci.24, 169–203 (1988)Google Scholar
  24. [V] Varopoulos, N.: (preprint)Google Scholar
  25. [W] Watanabe, S.: Analysis of Wiener functional and its applications to heat kernels. Ann. Probab.15, 1–39 (1987)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Ben Arous
    • 1
  • R. Léandre
    • 2
  1. 1.Department de MathématiquesÉcole Normale SupérieureParis Cedex 05France
  2. 2.Université Louis PasteurStrasbourgFrance

Personalised recommendations