Probability Theory and Related Fields

, Volume 91, Issue 3–4, pp 307–330

Transition densities for Brownian motion on the Sierpinski carpet

  • Martin T. Barlow
  • Richard F. Bass
Article

Summary

Upper and lower bounds are obtained for the transition densitiesp(t, x, y) of Brownian motion on the Sierpinski carpet. These are of the same form as those which hold for the Sierpinski gasket. In addition, the joint continuity ofp(t, x, y) is proved, the existence of the spectral dimension is established, and the Einstein relation, connecting the spectral dimension, the Hausdorff dimension and the resistance exponent, is shown to hold.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BS] Bandt, C., Stahnke, J.: Self-similar sets 6. Interior distance on deterministic fractals. (Preprint 1990)Google Scholar
  2. [B] Barlow, M.T.: Necessary and sufficient conditions for the continuity of local time of Lévy processes. Ann. Probab.16, 1389–1427 (1988)Google Scholar
  3. [BB1] Barlow, M.T., Bass, R.F.: The construction of Brownian motion on the Sierpinski carpet. Ann. Inst. Henri Poincaré25, 225–257 (1989)Google Scholar
  4. [BB2] Barlow, M.T., Bass, R.F.: Local times for Brownian motion on the Sierpinski carpet. Probab. Theory Relat. Fields85, 91–104 (1990)Google Scholar
  5. [BB3] Barlow, M.T., Bass, R.F.: On the resistance of the Sierpinski carpet. Proc. R. Soc. Lond Ser. A431, 345–360 (1990)Google Scholar
  6. [BBS] Barlow, M.T., Bass, R.F., Sherwood, J.D.: Resistance and spectral dimension of Sierpinski carpets. J. Phys. A.23, L253-L258 (1990)Google Scholar
  7. [BP] Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinski gasket. Probab. Theory Relat. Fields79, 543–623 (1988)Google Scholar
  8. [BH] Bass, R.F., Hsu, P.: Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains. Ann. Probab. (to appear)Google Scholar
  9. [FaS] Fabes, E.B., Stroock, D.W.: A new proof of Moser's inequality using the old ideas of Nash. Arch. Ration. Mech. Anal.96, 328–338 (1986)Google Scholar
  10. [F] Fukushima, M.: Dirichlet forms and Markov processes. Tokyo: Kodansha, 1980Google Scholar
  11. [FS] Fukushima, M., Shima, T.: On a spectral analysis for the Sierpinski gasket. J. Potential Anal. (to appear)Google Scholar
  12. [HBA] Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phys.36, 695–798 (1987)Google Scholar
  13. [H] Hambly, B.M.: On the limiting distribution of a supercritical branching process in a random environment. (Preprint 1990).Google Scholar
  14. [KR] Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Sel. Transl. Ser. 1.10, 199–325 (1962)Google Scholar
  15. [L] Lindstrøm, T.: Brownian motion on nested fractals. Mem. Am. Math. Soc.240 (1990)Google Scholar
  16. [M] Marcus, M.B., Rosen, J.: Sample path properties of the local times of strongly symmetric Markov processes via Gaussian processes. (Preprint 1990)Google Scholar
  17. [O] Osada, H.: Isoperimetric dimension and estimates of heat kernels of pre-Sierpinski carpets. Probab. Theory Relat. Fields86, 469–490 (1990)Google Scholar
  18. [RT] Rammal, R., Toulouse, G.: Random walks on fractal structures and percolation clusters. J. Phys. Lett.44, L13-L22 (1983)Google Scholar
  19. [W] Watanabe, H.: Spectral dimension of a wire network. J. Phys. A.18, 2807–2823 (1985)Google Scholar
  20. [Y] Yosida, K.: Lectures on differential and integral equations. New York: Interscience 1960Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Martin T. Barlow
    • 1
  • Richard F. Bass
    • 2
  1. 1.Statistical LaboratoryCambridgeUK
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations