Advertisement

Archiv der Mathematik

, Volume 47, Issue 3, pp 232–237 | Cite as

On the lattice rest of a convex body in ℝs, II

  • Werner Georg Nowak
Article

Keywords

Convex Body Lattice Rest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.Abramowitz and I.Stegun, Handbook of mathematical functions. New York 1964.Google Scholar
  2. [2]
    B. C. Berndt, On the average order of a class of arithmetical functions, I. J. Number Theory3, 184–203 (1971).Google Scholar
  3. [3]
    B. C. Berndt, On the average order of a class of arithmetical functions, II. J. Number Theory3, 288–305 (1971).Google Scholar
  4. [4]
    S. Bochner, Die Poissonsche Summenformel in mehreren Veränderlichen. Math. Ann.106, 56–63 (1932).Google Scholar
  5. [5]
    T.Bonnesen und W.Fenchel, Theorie der konvexen Körper. Berlin 1934.Google Scholar
  6. [6]
    F.Fricker, Einführung in die Gitterpunktlehre. Basel-Boston-Stuttgart 1982.Google Scholar
  7. [7]
    J. L. Hafner, On the average order of a class of arithmetical functions. J. Number Theory15, 36–76 (1982).Google Scholar
  8. [8]
    E. Hlawka, Über Integrale auf konvexen Körpern I. Monatsh. Math.54, 1–36 (1950).Google Scholar
  9. [9]
    W. G. Nowak, AnΩ-estimate for the lattice rest of a convex planar domain. Proc. Roy. Soc. Edinburgh, Sect. A100, 295–299 (1985).Google Scholar
  10. [10]
    W. G. Nowak, On the lattice rest of a convex body in ℝs. Arch. Math.45, 284–288 (1985).Google Scholar
  11. [11]
    G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome, I: Entwicklungssätze. Math. Z.25, 87–115 (1926).Google Scholar
  12. [12]
    G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome, II: Zahlentheoretische Anwendungen. Math. Z.25, 388–404 (1926).Google Scholar
  13. [13]
    G. Szegö undA. Walfisz, Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Erste Abhandlung). Math. Z.26, 138–156 (1927).Google Scholar
  14. [14]
    G. Szegö undA. Walfisz, Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Zweite Abhandlung). Math. Z.26, 467–486 (1927).Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Werner Georg Nowak
    • 1
  1. 1.Institut für Mathematik der Universität für BodenkulturWien

Personalised recommendations