Probability Theory and Related Fields

, Volume 105, Issue 4, pp 481–511 | Cite as

On the existence of smooth densities for jump processes

  • Jean Picard


We consider a Lévy process X t and the solution Y t of a stochastic differential equation driven by X t; we suppose that X t has infinitely many small jumps, but its Lévy measure may be very singular (for instance it may have a countable support). We obtain sufficient conditions ensuring the existence of a smooth density for Y t: these conditions are similar to those of the classical Malliavin calculus for continuous diffusions. More generally, we study the smoothness of the law of variables F defined on a Poisson probability space; the basic tool is a duality formula from which we estimate the characteristic function of F.

Mathematics Subject Classification (1991)

60H07 60J75 60J30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bichteler, K., Gravereaux, J.B., Jacob, J.: Malliavin calculus for processes with jumps. Stochastics Monographs, vol. 2, London: Gordon and Breach 1987zbMATHGoogle Scholar
  2. 2.
    Bismut, J.M.: Calcul des variations stochastique et processus de sauts. Z. Wahrscheinlichkeitstheorie Verw. Geb.63, 147–235 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carlen, E., Pardoux, E.: Differential calculus and integration by parts on Poisson space. In: Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988), pp. 63–73 (Math. Appl., Vol 59) Dordrecht: Kluwer 1990Google Scholar
  4. 4.
    Fujiwara, T., Kunita, H.: Stochastic differential equations of jump type and Lévy processes in diffeomorphisms group. J. Math. Kyoto Univ.25, 71–106 (1985)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Léandre, R.: Flot d'une équation différentielle stochastique avec semi-martingale directrice discontinue. In: Séminaire de Probabilités XIX, pp. 271–274 (Lect. Notes Math., Vol. 1123) Berlin: Springer 1985Google Scholar
  6. 6.
    Léandre, R.: Régularité de processus de sauts dégénérés. Ann. Inst. Henri Poincaré Prob. Stat.21, 125–146 (1985).zbMATHGoogle Scholar
  7. 7.
    Léandre, R.: Régularité de processus de sauts dégénérés (II). Ann. Inst. Henri Poincaré Prob. Stat.24, 209–236 (1988)zbMATHGoogle Scholar
  8. 8.
    Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators. In: Proc. Intern. Symp. SDE (Kyoto, 1976), pp. 195–263. New York: Wiley 1978Google Scholar
  9. 9.
    Meyer, P.A.: Flot d'une équation différentielle stochastique. In: Séminaire de Probabilités XV, pp. 103–117, (Lect. Notes Math., Vol. 850) Berlin: Springer 1981Google Scholar
  10. 10.
    Nualart, D., Vives, J.: Anticipative calculus for the Poisson process based on the Fock space, In: Séminaire de Probabilités XXIV, pp. 154–165 (Lect. Notes Math., Vol. 1426) Berlin: Springer 1990Google Scholar
  11. 11.
    Nualart, D., Vives, J.: A duality formula on the Poisson space and some applications. In: Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993), (Prog. Probab., Vol. 36) Basel: Birkhäuser 1995Google Scholar
  12. 12.
    Picard, J.: Formules de dualité sur l'espace de Poisson. Ann. Inst. Henri Poincaré Prob. Stat., to appearGoogle Scholar
  13. 13.
    Sato, K.: Absolute continuity of multivariate distributions of class L. J. Multivariate Anal.12, 89–94 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tucker, H.G.: On a necessary and sufficient condition that an infinitely divisible distribution be absolutely continuous. Trans. Amer. Math. Soc.118, 316–330 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Jean Picard
    • 1
  1. 1.Laboratoire de Mathématiques Appliquées, URA 1501 du CNRSUniversité Blaise PascalAubière CedexFrance

Personalised recommendations