Acta Informatica

, Volume 29, Issue 8, pp 737–760 | Cite as

An efficiency preorder for processes

  • S. Arun-Kumar
  • M. Hennessy
Article

Abstract

A simple efficiency preorder for CCS processes is introduced in whichp≲q means thatq is at least as fast asp, or more generally,p uses at least as much resources asq. It is shown to be preserved by all CCS contexts except summation and it is used to analyse a non-trivial example: two different implementations of a bounded buffer. Finally we give a sound and complete proof system for finite processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Proc. International Conference on Theoretical Aspects of Computer Software. (Lect. Notes Comput. Sci., vol. 526, pp. 152–175. Berlin Heidelberg New York: Springer 1991Google Scholar
  2. 2.
    Beaton, J., Bergstra, J.: Real time process algebra, Technical Report CWI Amsterdam, 1989Google Scholar
  3. 3.
    Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-based verification tool for finite-state systems, Technical Report ECS-LFCS-89-83, University of Edinburgh, 1989Google Scholar
  4. 4.
    Davies, J., Schneider, S.: An introduction to timed CSP, Technical Report, PRG, Oxford, 1989Google Scholar
  5. 5.
    Gerth, R., Boucher, A.: A timed failures model for extended communicating sequential processes (Lect. Notes Comput. Sci., vol. 267, pp. 95–114. Berlin Heidelberg New York: Springer 1986Google Scholar
  6. 6.
    Hennessy, M.: Algebraic theory of processes. Cambridge, MA: MIT Press 1988Google Scholar
  7. 7.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM32(1), 137–161 (1985)Google Scholar
  8. 8.
    Hennessy, M., Regan, T.: A temporal process algebra. Technical Report 2/90, University of Sussex, 1990Google Scholar
  9. 9.
    C.A.R. Hoare: Communicating sequential processes. Englewood Cliffs, NJ: Prentice Hall 1985Google Scholar
  10. 10.
    Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci.25, 267–310 (1983)Google Scholar
  11. 11.
    Milner, R.: Communicationa and concurrency. Englewood Cliffs, NJ: Prentice Hall 1989Google Scholar
  12. 12.
    Nicollin, X., Richier, J.L., Sifakis, J., Voiron, J.: ATP: An algebra for timed processes. Technical Report, Grenoble, 1989Google Scholar
  13. 13.
    Park, D.: Concurrency and automata on infinite sequences. (Lect. Notes Comput. Sci., vol. 104, pp. 167–183) Berlin Heidelberg New York: Springer 1980Google Scholar
  14. 14.
    Reed, G.M., Roscoe, A.: A timed model for communicating sequential processes (Lect. Notes Comput. Sci., vol. 226, pp. 314–323) Berlin Heidelberg New York: Springer 1986Google Scholar
  15. 15.
    Rudkin, S., Smith, C.R.: A temporal enhancement for LOTOS. British Telecom, 1988Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • S. Arun-Kumar
    • 1
  • M. Hennessy
    • 2
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyNew DelhiIndia
  2. 2.School of Cognitive and Computing SciencesUniversity of SussexBrightonEngland

Personalised recommendations