Advertisement

Biophysik

, Volume 4, Issue 3, pp 214–223 | Cite as

Automatische Natrium-Fluxometrie

  • H. Albertz
  • M. Muftic
Article

Zusammenfassung

Es wurde eine neue Apparatur zur Kurzschlußstrommessung während des aktiven Na-Transportes beschrieben. Dabei fand man zwei verschiedene Stromkurven:
  1. 1.

    die initiale instabile Phase und die

     
  2. 2.

    späte stabile Phase.

     

Durch eine Elektrolytenänderung hat man das Profil der Stromkurven geändert. Zum Beispiel dämpft Barium die instabile Phase und verländert die hohen Werte der stabilen Phase.

Mit dieser Apparatur ist es möglich, völlig automatisch mehrere Meßstellen auf einmal zu korrigieren und registrieren.

Die wichtige Rolle, die dieser Apparat in der Molekularphysiologie, -pathologie und -pharmakologie bieten kann, wird diskutiert.

Summary

A new apparatus for short-circuit measuring during active sodium transport is described. Two distinguished current curves are observed:
  1. 1.

    initial instabile phase and

     
  2. 2.

    stagnant stabile phase.

     

By modification of electrolytes we obtained considerable change in those curves. F. ex. Barium abolishes instabile phase and supports stabile phase from beginning on high values. It is possible to test simultaneously several “Na transport cells” with automatic correction and registration. The possible use of this Fluxometer in molecular physiology, pathology and pharmacology are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andersen, N. B.: Effect of general anesthetics on sodium transport in the isolated toad bladder. Anesthesiology27, 304 (1966).Google Scholar
  2. Baba, W. I., A. J. Smith, andM. M. Townshend: A comparison of the effects of ethacrynic acid and a mercurial diuretic (Mersalyl) on sodium transport across the isolated frog skin. Brit. J. Pharmacol.28, 238 (1966).Google Scholar
  3. Bittar, E. E.: On the natriferic action of 8-lysine vasopressin. Biochem. biophys. Res. Commun.23, 96 (1966).Google Scholar
  4. Bresciani, F., F. Auricchio, andC. Fiore: A biochemical study of the X-radiation-induced inhibition of sodium transport (Na pump) in human erythrocytes. Radiat. Res.22, 463 (1964).Google Scholar
  5. Civan, M. M., O. Kedem, andA. Leaf: Effect of vasopressin on the electrical potential of the toad bladder under conditions of zero net Na-transport. Fed. Proc.24, 111 (1965).Google Scholar
  6. Crabbé, J., andP. De Weer: Action of aldosterone and vasopressin on the active transport of sodium by the isolated toad bladder. J. Physiol. (Lond.)180, 560 (1965).Google Scholar
  7. Ferguson, D. R.: Effects of frusemide on sodium and water transport by the isolated toad bladder. Brit. J. Pharmacol.27, 528 (1966).Google Scholar
  8. Frimmer, M., u.E. Buddecke: Untersuchungen zum Wirkungsmechanismus permeations-fördernder basischer Polypeptide. Z. Naturforsch.19b, 789 (1964).Google Scholar
  9. Fuhrman, F. A., andH. H. Ussing: A characteristic response of the isolated frog skin potential to neurohypophysial principles and its relation to the transport of sodium and water. J. cell. comp. Physiol.38, 110 (1951).Google Scholar
  10. —,G. J. Fuhrman, andW. Burrows: Action and properties of an inhibitor of active transport of sodium produced by cholera vibrios. J. infect. Dis.11, 225 (1962).Google Scholar
  11. Herms, W., u.K. E. Hofmann: Untersuchungen an der Froschhaut zur Kenntnis des Wirkungsmechanismus von Diuretica an transport-aktiven Membranen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.251, 355 (1965).Google Scholar
  12. Hook, J. B., andH. E. Williamson: Localization of the site of the natruretic action of SKF 525-A1. J. Pharmacol. exp. Ther.150, 270 (1965).Google Scholar
  13. Kimizuka, H., andK. Koketsu: Ion transport through cell membrane. J. theor. Biol.6, 290 (1964).Google Scholar
  14. Kover, G., R. R. Tercafs etE. Schoffeniels: Différence de potentiel et flux net d'eau au niveau de la peau isolée de Grenouille; influence du Polyéthylêne-Glycol ‚'400“. Arch. int. Physiol. LXXI, 588 (1963).Google Scholar
  15. Köver, G., R.Tercafs, and E.Szöcs: The effect of papaverine on the transport of ions and water in the isolated frog skin. Acta biol. Acid. Sci. hung.15/Suppl. 6 (1964).Google Scholar
  16. Leb, D. E., T. Hoshiko, andB. D. Lindley: Effects of alkali metal cations on the potential across toad and bullfrog urinary bladder. J. gen. Physiol.48, 527 (1965).Google Scholar
  17. Meyer, M. B., andL. I. Goldberg: Natriuretic effect of papaverine. Pharmacol. Toxicol.93, 110 (1965).Google Scholar
  18. Morel, F., J. Maetz etC. Lucarain: Action des deux peptides neurohypophysaires sur le transport actif de sodium et le flux net d'eau à travers la peau de diverses espèces de batraciens anoures. Biochim. biophys. Acta (Amst.)28, 619 (1958).Google Scholar
  19. Phillips, R. A., A. H. G. Love, T. G. Mitchell, andE. M. Neptune, Jr.: Cathartics and the sodium pump. Nature (Lond.)206, 1367 (1965).Google Scholar
  20. Rado, J. P.: Mechanism of thiazide antidiuresis. Lancet7420, II, 1018 (1965).Google Scholar
  21. Sharp, G. W. G., C. L. Komak, andA. Leaf: Studies on the binding of aldosterone in the toad bladder. J. clin. Invest.45, 450 (1966).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • H. Albertz
    • 1
  • M. Muftic
    • 1
  1. 1.Hauptlaboratorium der Schering AGBerlin

Personalised recommendations