Neuroscience and Behavioral Physiology

, Volume 16, Issue 6, pp 490–497 | Cite as

Effect of serotonin on the development of a rat cerebral cortex tissue culture

  • A. R. Chubakov
  • E. A. Gromova
  • G. V. Konovalov
  • E. I. Chumasov
  • É. F. Sarkisova
Article

Conclusions

  1. 1.

    In long-lived tissue cultures of the visual cortex of newborn rats, further differentiation and maturation of the nerve and glial cells, synaptogenesis, and myelinization of the axons are observed. An increase in the number of synapses in the cultures (from the 15th day) is accompanied by a rearrangement of the functional activity of the neurons — conversion of the single activity to periodic activity.

     
  2. 2.

    Systematic addition of serotonin to the nutrient medium stimulates the growth and development of the cellular elements of the culture, including proliferation of the glia, differentiation of the neurons, synaptogenesis, and myelinization of the axons.

     
  3. 3.

    In cultures grown in a medium with serotonin, the spontaneous activity of the neurons is formed earlier, the relative number of active cells increases, and the type of neuronal activity changes: From the very beginning, neurons with periodic discharges (in the form of flareups) predominate. A tendency for an increase in the number of neurons responding to the introduction of serotonin with an inhibition of their activity is observed, which is close to their reactions in situ.

     
  4. 4.

    On the whole, the data obtained are evidence of a stimulating effect of serotonin on the morphofunctional development of a tissue culture of visual cortex of newborn rats.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. N. Bogolepov, Ultrastructure of the Synapses in the Normal and Pathological States [in Russian], Meditsina, Moscow (1975).Google Scholar
  2. 2.
    I. V. Viktorov, “Participation of the neuroglia in the formation of connections between isolated brain expiants,” in: Functions of the Neuroglia [in Russian], Metsniereba, Tbilisi (1979), p. 154.Google Scholar
  3. 3.
    M. D. Gedevanishvili, L. E. Tsutsunava, and N. A. Malazoniya, “Serotonin independently stimulates adhesion and reproduction of fibroblasts in culture,” Tsitologiya,24, No. 2, 224 (1982).Google Scholar
  4. 4.
    E. A. Gromova, Emotional Memory and Its Mechanisms [in Russian], Nauka, Moscow (1980).Google Scholar
  5. 5.
    E. A. Gromova, V. G. Tsyganova, and A. R. Chubakov, “Influence of serotonin and norepinephrine on RNA synthesis in a rat brain tissue culture,” Summaries of Reports at the Ninth All-Union Conference on the Biochemistry of the Nervous System [in Russian], Akad. Nauk ArmSSR, Erevan (1983), p. 107.Google Scholar
  6. 6.
    A. R. Chubakov, E. I. Chumasov, E. A. Gromova, G. V. Konovalov, and V. G. Tsyganova, “Influence of norepinephrine on the morphofunctional development of the rat cerebral cortex in tissue culture,” Zh. Vyssh. Nervn. Deyat.,34, No. 2, 330 (1984).Google Scholar
  7. 7.
    E. I. Chumasov, A. R. Chubakov, and V. G. Tsyganova, “Dependence of the differentiation of the neurons of the cortex and hippocampus in tissue culture on the growth and development of the neuroglia,” in: Ultrastructure of the Neurons and Pharmacological Effects [in Russian], Pushchino (1981), p. 154.Google Scholar
  8. 8.
    G. Ahmad and S. Zamenhof, “Serotonin as a growth factor for chick embryo brain,” Life Sci.,22, No. 11, 963 (1978).PubMedGoogle Scholar
  9. 9.
    R. Deskin, F. J. Seidler, W. L. Whitmore, and T. Slotkin, “Development of β-noradrenergic and dopaminergic receptor systems depends on maturation of their presynaptic nerve terminals in the rat brain,” J. Neurochem.,36, No. 6, 1683 (1981).PubMedGoogle Scholar
  10. 10.
    A. J. Dewar and P. J. Schields, “The relationship between electrical stimulation and RNA metabolism in rat brain,” Brain Res.,38, No. 1, 182 (1972).PubMedGoogle Scholar
  11. 11.
    H. Fujiwara, M. Uemoto, and C. Tanaka, “Stimulation of the rat dorsal raphein vivo releases labeled serotonin from the parietal cortex,” Brain Res.,216, No. 2, 351 (1981).PubMedGoogle Scholar
  12. 12.
    K. Goworek and C. Peister, “Morphometrische Untersuchungen uber den Einfluss von 5-Hydroxytryptamin-kreatininsulfat und Noradrenalinbitartrat auf das Wachstum von Cerebrocortexexplantatenin vitro,” J. Hirnforsch.,24, No. 4, 357 (1983).PubMedGoogle Scholar
  13. 13.
    H. A. Gromova, A. R. Chubakov, E. I. Chumasov, and H. V. Konovalov, “Serotonin as a stimulator of hippocampal cell differentiation in tissue culture,” Intern. J. Developm. Neurosci.,1, No. 6, 339 (1983).Google Scholar
  14. 14.
    K. Krnjevic, “Chemical nature of synaptic transmission in vertebrates,” Physiol. Rev.,54, No. 2, 418 (1974).Google Scholar
  15. 15.
    Y. Lamour, J. P. Rivot, D. Pointis, and L. Ory-Lavolee, “Laminar distribution of serotoninergic innervation in rat somatosensory cortex, as determined byin vivo electrochemical direction,” Brain Res.,259, No. 1, 163 (1983).PubMedGoogle Scholar
  16. 16.
    J. M. Lauder and F. E. Bloom, “Ontogeny of monoamine neurons in the locus coerulues, raphe nuclei and substantia migra of the rat. I. Cell differentiation,” J. Compar. Neurol.,155, No. 4, 469 (1974).Google Scholar
  17. 17.
    M. R. Murray, “Response of oligodendrocytes to serotonin,” in: Biology of neuroglia, W. F. Windle, ed., Thomas, Springfield (1958), p. 176.Google Scholar
  18. 18.
    P. G. Nelson, B. R. Ransom, M. Henkart, and P. N. Bullock, “Mouse spinal cord in cell culture. IV. Modulation of inhibitory synaptic function,” J. Neurophysiol.,40, No. 5, 1178 (1977).PubMedGoogle Scholar
  19. 19.
    L. Olsen and A. Seiger, “Early ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations,” Z. Anat. Entwickl.-Ges.,137, No. 2, 301 (1972).Google Scholar
  20. 20.
    C. Peister and K. Goworek, “Einfluss von 5-Hydroxytryptamin-(Serotonin-ukreatininsulfat) auf die Entwicklung von Cerebrocortex-explantaten neonataler Rattenin vitro,” Acta Histochim.,63, No. 1, 137 (1978).Google Scholar
  21. 21.
    M. Raff, “Self regulation of membrane receptors,” Nature,259, No. 5541, 265 (1976).Google Scholar
  22. 22.
    R. Samanin, T Mennini, A. Ferraris, C. Bendotti, and F. Borsini, “Hyper- and hypo-sensitivity of central serotonin receptors: H3-serotonin binding and functional studies in the rat,” Brain Res.,189, No. 2, 449 (1980).PubMedGoogle Scholar
  23. 23.
    L. L. Uphouse and S. C. Bondy, “The maturation of cortical serotonin binding sites,” Developm. Brain Res.,1, No. 3, 415 (1981).Google Scholar
  24. 24.
    B. B. Wolfe, D. H. Augystyn, R. E. Majocha, M. D. Dibner, P. B. Molinoff, R. J. Baldessarini, and K. G. Walton, “Effects of isoproterenol on the development of β-adrenergic receptor in brain cell aggregates,” Brain Res.,207, No. 1, 174 (1981).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. R. Chubakov
    • 1
    • 2
  • E. A. Gromova
    • 1
    • 2
  • G. V. Konovalov
    • 1
    • 2
  • E. I. Chumasov
    • 1
    • 2
  • É. F. Sarkisova
    • 1
    • 2
  1. 1.Institute of Biological PhysicsAcademy of Sciences of the USSRPushchino
  2. 2.Institute of Experimental MedicineAcademy of Medical Sciences of the USSRLeningrad

Personalised recommendations