Combinatorica

, Volume 12, Issue 1, pp 27–37 | Cite as

On integer points in polyhedra

  • W. Cook
  • M. Hartmann
  • R. Kannan
  • C. McDiarmid
Article

Abstract

We give an upper bound on the number of vertices ofP I , the integer hull of a polyhedronP, in terms of the dimensionn of the space, the numberm of inequalities required to describeP, and the size ϕ of these inequalities. For fixedn the bound isO(m n ϕ n− ). We also describe an algorithm which determines the number of integer points in a polyhedron to within a multiplicative factor of 1+ε in time polynomial inm, ϕ and 1/ε when the dimensionn is fixed.

AMS subject classification code (1991)

52 A 25 90 C 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Bárány, R. Howe, andL. Lovász: On integer points in polyhedra: a lower bound, Cowles Foundation Discussion Paper No. 917, Cowles Foundation for Research in Economics, Yale University, 1989.Google Scholar
  2. [2]
    J. W. S. Cassels:An Introduction to the Geometry of Numbers (Springer-Verlag, Berlin, 1971).Google Scholar
  3. [3]
    J. Cohen, andT. Hickey: Two algorithms for determining volumes of convex polyhedra,Journal of the Association for Computing Machinery,26 (1979), 401–414.Google Scholar
  4. [4]
    M. Dyer: On counting lattice points in polyhedra, submitted toSIAM Journal on Computing.Google Scholar
  5. [5]
    M. Dyer, A. Frieze, andR. Kannan: A random polynomial time algorthm for approximating the volume of convex bodies, Research Report No. 88-40, Department of Mathematics, Carnegie-Mellon University, 1989.Google Scholar
  6. [6]
    J. Edmonds, L. Lovász, andW. R. Pulleyblank: Brick decompositions and the matching rank of graphs,Combinatorica 2 (1982), 247–274.Google Scholar
  7. [7]
    M. R. Gary, andD. S. Johnson:Computers and Intractability, a Guide to the Theory of NP-completeness (W. H. Freeman and Co., San Francisco, 1979).Google Scholar
  8. [8]
    M. Grötschel, L. Lovász, andA. Schrijver:Geometric Algorithms and Combinatorial Optimization, Springer-Verlag, Heidelberg, 1988.Google Scholar
  9. [9]
    P. M. Gruber, andC. G. Lekkerkerker:Geometry of Numbers, (Second edition) North Holland, Amsterdam, 1987.Google Scholar
  10. [10]
    M. Hartmann: Cutting planes and the complexity of the integer hull, Technical Report No. 819, School of Operations Research and Industrial Engineering, Cornell University, 1989.Google Scholar
  11. [11]
    A. C. Hayes, andD. G. Larman: The vertices of the knapsack polytope,Discrete Applied Math. 6 (1983), 135–138.Google Scholar
  12. [12]
    R. Kannan: Minkowski's convex body theorem and integer programming,Math. of Operations Research 12 (1987), 415–440.Google Scholar
  13. [13]
    C. G. Lekkerkerker:Geometry of Numbers, North Holland, Amsterdam, 1969.Google Scholar
  14. [14]
    H. W. Lenstra, Jr.: Integer Programming in a fixed number of variables,Math. of Operations Research 8 (1983) 538–548.Google Scholar
  15. [15]
    L. Lovász: communicated by H.E. Scarf.Google Scholar
  16. [16]
    P. McMullen, andG. C. Shephard:Convex Polytopes and the Upper Bound Conjecture, Cambridge University Press, Cambridge, 1971.Google Scholar
  17. [17]
    D. Morgan: The set of vertices of the convex hull of integer points in regions defined by particular linear inequalities, submitted toMathematika.Google Scholar
  18. [18]
    D. S. Rubin: On the unlimited number of faces in integer hulls of linear programs with a single constraint,Operations Research,18 (1970), 940–946.Google Scholar
  19. [19]
    A. Schrijver:Theory of Linear and Integer Programming, Wiley, Chichester, 1986.Google Scholar
  20. [20]
    V. N. Shevchenko: On the number of extreme points in integer programming,Kibernetika (1981) No. 2, 133–134.Google Scholar
  21. [21]
    L. G. Valiant: The complexity of enumeration and reliability problems,SIAM Journal on Computing 8 (1979) 410–421.Google Scholar
  22. [22]
    L. Zamansky, andV. Cherkassky: Determination of the number of integer points in polyhedra inR 3: polynomial algorithms,Doklady Akad. Nauk. Ukrain. USSR Ser. A (1983) No. 4, 13–15.Google Scholar
  23. [23]
    L. Zamansky, andV. Cherkassky: The formula for finding the number of integer points under a line and its application,Ekonomika i Mat. Metody 20 (1984) No. 6, 1132–1138.Google Scholar
  24. [24]
    L. Zamansky, andV. Cherkassky:Effective algorithms for the solution of discrete optimization problems, Kiev: Znanie, 1984.Google Scholar
  25. [25]
    L. Zamansky, andV. Cherkassky: Generalization of the Jacobi-Perron algorithm for determining the number of integer points in polyhedra,Doklady Akad. Nauk. Ukrain. USSR Ser. A (1985) No. 10, 11–13.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • W. Cook
    • 1
  • M. Hartmann
    • 2
  • R. Kannan
    • 3
  • C. McDiarmid
    • 4
  1. 1.Bell Communications Research, U.S.A. and Institut für Ökonometrie und Operations ResearchUniversität BonnGermany
  2. 2.Department of Operations ResearchUniversity of North CarolinaUSA
  3. 3.Computer Science DepartmentCarnegie-Mellon UniversityUSA
  4. 4.Institute of Economics and StatisticsOxfordUK

Personalised recommendations